YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Significance of Prandtl Number on the Heat Transport and Flow Structure in Rotating Rayleigh–Bénard Convection

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 001::page 012501-1
    Author:
    Venugopal T, Vishnu
    ,
    De, Arnab Kumar
    ,
    Mishra, Pankaj Kumar
    DOI: 10.1115/1.4045062
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A direct numerical simulation of rotating Rayleigh–Bénard convection (RBC) for different fluids (Pr=0.015,0.7,1,7,20, and 100) in a cylindrical cell of aspect ratio Γ=0.5 is carried out in this work. The effect of rotation on the heat transfer rate, flow structures, their associated dynamics, and influence on the boundary layers are investigated. The Rayleigh number is fixed to Ra=106 and the rotation rates are varied for a wide range, starting from no rotation (Ro→∞) to high rotation rates (Ro≈0.01). For all the Prandtl numbers (Pr=0.015–100), a reduction in heat transfer with increase in rotation is observed. However, for Pr=7 and 20, a marginal increase of the Nusselt number for low rotation rates is obtained, which is attributed to the change in the flow structure from quadrupolar to dipolar state. The change in flow structure is associated with the statistical behavior of the boundary layers. As the flow makes a transition from quadrupolar to dipolar state, a reduction in the thermal boundary layer thickness is observed. At higher rotation rates, the thermal boundary layer thickness shows a power law variation with the rotation rate. The power law exponent is close to unity for moderate Pr, while it reduces for both lower and higher Pr. At extremely high rotation rates, the flow makes a transition to the conduction state. The critical rotation rate (1/Roc) for which transition to the conduction state is observed depends on the Prandtl number according to 1/Roc∝Pr0.5.
    • Download: (2.877Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Significance of Prandtl Number on the Heat Transport and Flow Structure in Rotating Rayleigh–Bénard Convection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275521
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorVenugopal T, Vishnu
    contributor authorDe, Arnab Kumar
    contributor authorMishra, Pankaj Kumar
    date accessioned2022-02-04T22:49:46Z
    date available2022-02-04T22:49:46Z
    date copyright1/1/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_01_012501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275521
    description abstractA direct numerical simulation of rotating Rayleigh–Bénard convection (RBC) for different fluids (Pr=0.015,0.7,1,7,20, and 100) in a cylindrical cell of aspect ratio Γ=0.5 is carried out in this work. The effect of rotation on the heat transfer rate, flow structures, their associated dynamics, and influence on the boundary layers are investigated. The Rayleigh number is fixed to Ra=106 and the rotation rates are varied for a wide range, starting from no rotation (Ro→∞) to high rotation rates (Ro≈0.01). For all the Prandtl numbers (Pr=0.015–100), a reduction in heat transfer with increase in rotation is observed. However, for Pr=7 and 20, a marginal increase of the Nusselt number for low rotation rates is obtained, which is attributed to the change in the flow structure from quadrupolar to dipolar state. The change in flow structure is associated with the statistical behavior of the boundary layers. As the flow makes a transition from quadrupolar to dipolar state, a reduction in the thermal boundary layer thickness is observed. At higher rotation rates, the thermal boundary layer thickness shows a power law variation with the rotation rate. The power law exponent is close to unity for moderate Pr, while it reduces for both lower and higher Pr. At extremely high rotation rates, the flow makes a transition to the conduction state. The critical rotation rate (1/Roc) for which transition to the conduction state is observed depends on the Prandtl number according to 1/Roc∝Pr0.5.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSignificance of Prandtl Number on the Heat Transport and Flow Structure in Rotating Rayleigh–Bénard Convection
    typeJournal Paper
    journal volume142
    journal issue1
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4045062
    journal fristpage012501-1
    journal lastpage012501-10
    page10
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian