YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical Development of Cross Section Uncertainty Library for Core Simulators

    Source: Journal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 001::page 011103-1
    Author:
    Huang, Dongli
    ,
    Abdel-Khalik, Hany S.
    DOI: 10.1115/1.4045031
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The current regulatory process allows for the use of models employing realistic assumptions as opposed to conservative bounding approaches, requiring a concerted use of best-estimate modeling and comprehensive estimation of uncertainties, collectively referred to as best-estimate-plus-uncertainty methods. This necessitates access to an integrated and automated procedure for the propagation and understanding of key sources of uncertainties. Focusing on neutronic reactor core simulation, this paper lays the theoretical foundations for an uncertainty characterization framework that is comprehensive, informative, and efficient, implying its ability to propagate all sources of uncertainties and identify key contributors in a computationally efficient manner. This paper represents the overarching objective of our work to propagate multigroup (MG) cross section uncertainties through lattice physics calculations and core-wide simulation. This requires the evaluation of few-group parameters uncertainties in terms of a wide range of local conditions, e.g., burnup, fuel temperature, etc., which results in a very high dimensional uncertainty space. The first strategy employed to compress the few-group uncertainties is the physics-guided coverage mapping (PCM) methodology developed to assess the similarity between the branch and base uncertainties in lattice calculation. To further compress the uncertainty propagated, this paper employs an accuracy-preserving reduced order modeling (ROM) technique relying on the use of range finding algorithms to construct all few-group parameters variations to a very small preset tolerance. In a separate cosubmitted paper, this framework is demonstrated to thermal reactors including both light and heavy water systems using a number of computer codes, including NESTLE-C, SERPENT, SCALE's NEWT, and SAMPLER codes.
    • Download: (224.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical Development of Cross Section Uncertainty Library for Core Simulators

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275508
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorHuang, Dongli
    contributor authorAbdel-Khalik, Hany S.
    date accessioned2022-02-04T22:49:27Z
    date available2022-02-04T22:49:27Z
    date copyright1/1/2020 12:00:00 AM
    date issued2020
    identifier issn2332-8983
    identifier otherners_006_01_011103.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275508
    description abstractThe current regulatory process allows for the use of models employing realistic assumptions as opposed to conservative bounding approaches, requiring a concerted use of best-estimate modeling and comprehensive estimation of uncertainties, collectively referred to as best-estimate-plus-uncertainty methods. This necessitates access to an integrated and automated procedure for the propagation and understanding of key sources of uncertainties. Focusing on neutronic reactor core simulation, this paper lays the theoretical foundations for an uncertainty characterization framework that is comprehensive, informative, and efficient, implying its ability to propagate all sources of uncertainties and identify key contributors in a computationally efficient manner. This paper represents the overarching objective of our work to propagate multigroup (MG) cross section uncertainties through lattice physics calculations and core-wide simulation. This requires the evaluation of few-group parameters uncertainties in terms of a wide range of local conditions, e.g., burnup, fuel temperature, etc., which results in a very high dimensional uncertainty space. The first strategy employed to compress the few-group uncertainties is the physics-guided coverage mapping (PCM) methodology developed to assess the similarity between the branch and base uncertainties in lattice calculation. To further compress the uncertainty propagated, this paper employs an accuracy-preserving reduced order modeling (ROM) technique relying on the use of range finding algorithms to construct all few-group parameters variations to a very small preset tolerance. In a separate cosubmitted paper, this framework is demonstrated to thermal reactors including both light and heavy water systems using a number of computer codes, including NESTLE-C, SERPENT, SCALE's NEWT, and SAMPLER codes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTheoretical Development of Cross Section Uncertainty Library for Core Simulators
    typeJournal Paper
    journal volume6
    journal issue1
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4045031
    journal fristpage011103-1
    journal lastpage011103-9
    page9
    treeJournal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian