YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Thermal Optimization of Air Foil Thrust Bearings Using Different Foil Materials

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 010::page 0101003-1
    Author:
    Rieken, Markus
    ,
    Mahner, Marcel
    ,
    Schweizer, Bernhard
    DOI: 10.1115/1.4047633
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Air foil bearings are used in turbomachinery applications with high speeds and in oil-free environments. Their numerical analysis has to account for the multiphysicality of the problem. This work features a detailed thermo-elasto-hydrodynamic model of an air foil thrust bearing with bump-type foil-structure. The bearing geometry is designed to produce a high load capacity while maintaining thermally stable conditions. The presented model considers foil deformations using a Reissner–Mindlin-type shell theory. Dry friction (stick-slip approach) between the top foil, the bump foil, and the base plate is taken into account in the model. Reynolds equation from the lubrication theory is used to study the hydrodynamic behavior of the air film. A thermal model of the lubricating gap, the foil sandwich, and the rotor disk including heat fluxes into the rotor and the periphery as well as a cooling flow on the backside of the rotor disk are presented. Elastic deformations of the rotor disk due to centrifugal effects are calculated; deformations caused by temperature gradients are investigated as well. In air foil thrust bearings, very high temperatures are often observed and a forced cooling flow through the foil sandwich has to be applied. Using a cooling flow by applying a pressure difference between the inner and outer radius of the thrust bearing has several drawbacks: the additional cooling flow reduces the overall efficiency of the machine and requires additional constructive measures. In this work, a passive cooling concept is analyzed, where the typical steel foils are replaced with other materials, which have a significantly higher thermal conductivity. The simulation results show that the bearing temperatures can be reduced markedly (up to 70 °C in the considered test case) by this approach.
    • Download: (4.204Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Thermal Optimization of Air Foil Thrust Bearings Using Different Foil Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275456
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorRieken, Markus
    contributor authorMahner, Marcel
    contributor authorSchweizer, Bernhard
    date accessioned2022-02-04T22:23:03Z
    date available2022-02-04T22:23:03Z
    date copyright9/11/2020 12:00:00 AM
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_9_091012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275456
    description abstractAir foil bearings are used in turbomachinery applications with high speeds and in oil-free environments. Their numerical analysis has to account for the multiphysicality of the problem. This work features a detailed thermo-elasto-hydrodynamic model of an air foil thrust bearing with bump-type foil-structure. The bearing geometry is designed to produce a high load capacity while maintaining thermally stable conditions. The presented model considers foil deformations using a Reissner–Mindlin-type shell theory. Dry friction (stick-slip approach) between the top foil, the bump foil, and the base plate is taken into account in the model. Reynolds equation from the lubrication theory is used to study the hydrodynamic behavior of the air film. A thermal model of the lubricating gap, the foil sandwich, and the rotor disk including heat fluxes into the rotor and the periphery as well as a cooling flow on the backside of the rotor disk are presented. Elastic deformations of the rotor disk due to centrifugal effects are calculated; deformations caused by temperature gradients are investigated as well. In air foil thrust bearings, very high temperatures are often observed and a forced cooling flow through the foil sandwich has to be applied. Using a cooling flow by applying a pressure difference between the inner and outer radius of the thrust bearing has several drawbacks: the additional cooling flow reduces the overall efficiency of the machine and requires additional constructive measures. In this work, a passive cooling concept is analyzed, where the typical steel foils are replaced with other materials, which have a significantly higher thermal conductivity. The simulation results show that the bearing temperatures can be reduced markedly (up to 70 °C in the considered test case) by this approach.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThermal Optimization of Air Foil Thrust Bearings Using Different Foil Materials
    typeJournal Paper
    journal volume142
    journal issue10
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4047633
    journal fristpage0101003-1
    journal lastpage0101003-21
    page21
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian