YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of 45-deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio from 4:1 to 2:1

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 007::page 071003-1
    Author:
    Sahin, Izzet
    ,
    Chen, Andrew F
    ,
    Shiau, Chao-Cheng
    ,
    Han, Je-Chin
    ,
    Krewinkel, Robert
    DOI: 10.1115/1.4046492
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The internal cooling passages of gas turbine blades mostly have varying aspect ratios from one passage to another. However, there are limited data available in the open literature that used a reduced cross section and aspect ratio (AR), after the tip turn. Therefore, the current study presents heat transfer and pressure drop of three different α = 45 deg profiled rib orientations, typical parallel (usual), reversed parallel (unusual), and crisscross patterns in a rotating two-pass rectangular channel with AR = 4:1 and 2:1 in the first radially outward flow and second radially inward flow passages, respectively. For each rib orientation, regional averaged heat transfer results are obtained for both the flow passages with the Reynolds number ranging from 10,000 to 70,000 for the first passage and 16,000 to 114,000 for the second passage with a rotational speed range of 0–400 rpm. This results in the highest rotation number of 0.39 and 0.16 for the first and second passage respectively. The effects of rib orientation, aspect ratio variation, 180-deg tip turn, and rotation number on the heat transfer and pressure drop will be addressed. According to the results, for usual, unusual and crisscross rib patterns, increasing rotation number causes the heat transfer to decrease on the leading surface and increase on the trailing surface for the first passage and vice versa for the second passage. The overall heat transfer enhancement of the usual and unusual rib patterns is higher than the crisscross one. In terms of the pressure losses, the crisscross rib pattern has the lowest and the usual rib pattern has the highest-pressure loss coefficients. When pressure loss and heat transfer enhancement are both taken into account together, the crisscross or unusual rib pattern might be an option to use in the internal cooling method. Therefore, the results can be useful for the turbine blade internal cooling design and heat transfer analysis.
    • Download: (1.800Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of 45-deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio from 4:1 to 2:1

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275424
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSahin, Izzet
    contributor authorChen, Andrew F
    contributor authorShiau, Chao-Cheng
    contributor authorHan, Je-Chin
    contributor authorKrewinkel, Robert
    date accessioned2022-02-04T22:22:00Z
    date available2022-02-04T22:22:00Z
    date copyright6/30/2020 12:00:00 AM
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_7_071003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275424
    description abstractThe internal cooling passages of gas turbine blades mostly have varying aspect ratios from one passage to another. However, there are limited data available in the open literature that used a reduced cross section and aspect ratio (AR), after the tip turn. Therefore, the current study presents heat transfer and pressure drop of three different α = 45 deg profiled rib orientations, typical parallel (usual), reversed parallel (unusual), and crisscross patterns in a rotating two-pass rectangular channel with AR = 4:1 and 2:1 in the first radially outward flow and second radially inward flow passages, respectively. For each rib orientation, regional averaged heat transfer results are obtained for both the flow passages with the Reynolds number ranging from 10,000 to 70,000 for the first passage and 16,000 to 114,000 for the second passage with a rotational speed range of 0–400 rpm. This results in the highest rotation number of 0.39 and 0.16 for the first and second passage respectively. The effects of rib orientation, aspect ratio variation, 180-deg tip turn, and rotation number on the heat transfer and pressure drop will be addressed. According to the results, for usual, unusual and crisscross rib patterns, increasing rotation number causes the heat transfer to decrease on the leading surface and increase on the trailing surface for the first passage and vice versa for the second passage. The overall heat transfer enhancement of the usual and unusual rib patterns is higher than the crisscross one. In terms of the pressure losses, the crisscross rib pattern has the lowest and the usual rib pattern has the highest-pressure loss coefficients. When pressure loss and heat transfer enhancement are both taken into account together, the crisscross or unusual rib pattern might be an option to use in the internal cooling method. Therefore, the results can be useful for the turbine blade internal cooling design and heat transfer analysis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of 45-deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel With Aspect Ratio from 4:1 to 2:1
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4046492
    journal fristpage071003-1
    journal lastpage071003-14
    page14
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian