YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Demonstration of Inverse Heat Transfer Methodologies for Turbine Applications

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 006::page 061009-1
    Author:
    Gonzalez Cuadrado, David
    ,
    Lozano, Francisco
    ,
    Paniagua, Guillermo
    DOI: 10.1115/1.4046546
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Gas turbines operate at extreme temperatures and pressures, constraining the use of both optical measurement techniques as well as probes. A strategy to overcome this challenge consists of instrumenting the external part of the engine, with sensors located in a gentler environment, and use numerical inverse methodologies to retrieve the relevant quantities in the flowpath. An inverse heat transfer approach is a procedure that is used to retrieve the temperature, pressure, or mass flow through the engine based on the external casing temperature data. This manuscript proposes an improved digital filter inverse heat transfer method, which consists of a linearization of the heat conduction equation using sensitivity coefficients. The sensitivity coefficient characterizes the change of temperature due to a change in the heat flux. The heat conduction equation contains a non-linearity due to the temperature-dependent thermal properties of the materials. In previous literature, this problem is solved via iterative procedures that however increase the computational effort. The novelty of the proposed strategy consists of the inclusion of a non-iterative procedure to solve the non-linearity features. This procedure consists of the computation of the sensitivity coefficients in the function of temperature, together with an interpolation where the measured temperature is used to retrieve the sensitivity coefficients in each timestep. These temperature-dependent sensitivity coefficients are then used to compute the heat flux by solving the linear system of equations of the digital filter method. This methodology was validated in the Purdue Experimental Turbine Aerothermal Laboratory (PETAL) annular wind tunnel, a two-minute transient experiment with flow temperatures up to 450 K. Infrared thermography is used to measure the temperature in the outer surface of the inlet casing of a high-pressure turbine. Surface thermocouples measure the endwall metal temperature. The metal temperature maps from the IR thermography were used to retrieve the heat flux with the inverse method. The inverse heat transfer method results were validated against a direct computation of the heat flux obtained from temperature readings of surface thermocouples. The experimental validation was complemented with an uncertainty analysis of the inverse methodology: the Karhunen–Loeve expansion. This technique allows the propagation of uncertainty through stochastic systems of differential equations. In this case, the uncertainty of the inner casing heat flux has been evaluated through the simulation of different samples of the uncertain temperature field of the outer casing.
    • Download: (1.024Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Demonstration of Inverse Heat Transfer Methodologies for Turbine Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275420
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorGonzalez Cuadrado, David
    contributor authorLozano, Francisco
    contributor authorPaniagua, Guillermo
    date accessioned2022-02-04T22:21:54Z
    date available2022-02-04T22:21:54Z
    date copyright5/28/2020 12:00:00 AM
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_6_061009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275420
    description abstractGas turbines operate at extreme temperatures and pressures, constraining the use of both optical measurement techniques as well as probes. A strategy to overcome this challenge consists of instrumenting the external part of the engine, with sensors located in a gentler environment, and use numerical inverse methodologies to retrieve the relevant quantities in the flowpath. An inverse heat transfer approach is a procedure that is used to retrieve the temperature, pressure, or mass flow through the engine based on the external casing temperature data. This manuscript proposes an improved digital filter inverse heat transfer method, which consists of a linearization of the heat conduction equation using sensitivity coefficients. The sensitivity coefficient characterizes the change of temperature due to a change in the heat flux. The heat conduction equation contains a non-linearity due to the temperature-dependent thermal properties of the materials. In previous literature, this problem is solved via iterative procedures that however increase the computational effort. The novelty of the proposed strategy consists of the inclusion of a non-iterative procedure to solve the non-linearity features. This procedure consists of the computation of the sensitivity coefficients in the function of temperature, together with an interpolation where the measured temperature is used to retrieve the sensitivity coefficients in each timestep. These temperature-dependent sensitivity coefficients are then used to compute the heat flux by solving the linear system of equations of the digital filter method. This methodology was validated in the Purdue Experimental Turbine Aerothermal Laboratory (PETAL) annular wind tunnel, a two-minute transient experiment with flow temperatures up to 450 K. Infrared thermography is used to measure the temperature in the outer surface of the inlet casing of a high-pressure turbine. Surface thermocouples measure the endwall metal temperature. The metal temperature maps from the IR thermography were used to retrieve the heat flux with the inverse method. The inverse heat transfer method results were validated against a direct computation of the heat flux obtained from temperature readings of surface thermocouples. The experimental validation was complemented with an uncertainty analysis of the inverse methodology: the Karhunen–Loeve expansion. This technique allows the propagation of uncertainty through stochastic systems of differential equations. In this case, the uncertainty of the inner casing heat flux has been evaluated through the simulation of different samples of the uncertain temperature field of the outer casing.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Demonstration of Inverse Heat Transfer Methodologies for Turbine Applications
    typeJournal Paper
    journal volume142
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4046546
    journal fristpage061009-1
    journal lastpage061009-10
    page10
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian