| contributor author | Murray, Alexander V. | |
| contributor author | Ireland, Peter T. | |
| contributor author | Romero, Eduardo | |
| date accessioned | 2022-02-04T22:21:30Z | |
| date available | 2022-02-04T22:21:30Z | |
| date copyright | 9/16/2020 12:00:00 AM | |
| date issued | 2020 | |
| identifier issn | 0889-504X | |
| identifier other | turbo_142_11_111003.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4275407 | |
| description abstract | Further improvements in gas turbine efficiency can be sought through more advanced cooling systems—such as the double-wall, effusion system—which provide high cooling effectiveness with low coolant utilization. The double-wall system, as described here, comprises two walls: one with a regular array of impingement holes and the other with a closely packed, regular array of film holes (characteristic of effusion systems). These walls are mechanically and thermally connected via a bank of pedestals which increase coolant wetted area and turbulent flow features. However, a lack of data exists in the open literature on these systems. This study presents a novel experimental heat transfer facility designed with the intent of investigating flat plate versions of such double-wall geometries. Key features of the facility are presented including the use of recirculation to increase the mainstream-to-coolant temperature ratio and the use of infrared thermography to obtain thermal measurements. Some rig commissioning characteristics are also provided which demonstrate well-conditioned, uniform flow. Both coolant and mainstream Reynolds numbers are matched to engine conditions, with the Biot number within around 15% of engine conditions. The facility is used to assess the cooling performance of four double-wall effusion geometries which incorporate various geometrical features. Both overall effectiveness and film effectiveness measurements are presented at a range of coolant mass flows with conclusions drawn as to preferable features from a cooling perspective. The results from a fully conjugate computational fluid dynamics (CFD) model of the facility are presented which utilized boundary conditions obtained during experimental runs. Additionally, a computationally efficient decoupled conjugate method developed previously by the authors was adapted to assess the experimental geometries with the results comparing favorably. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems | |
| type | Journal Paper | |
| journal volume | 142 | |
| journal issue | 11 | |
| journal title | Journal of Turbomachinery | |
| identifier doi | 10.1115/1.4047384 | |
| journal fristpage | 0111003-1 | |
| journal lastpage | 0111003-15 | |
| page | 15 | |
| tree | Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 011 | |
| contenttype | Fulltext | |