YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 011::page 0110816-1
    Author:
    Zhang, Yu Ming
    ,
    Yang, Yu-Ping
    ,
    Zhang, Wei
    ,
    Na, Suck-Joo
    DOI: 10.1115/1.4047947
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Welding is a major manufacturing process that joins two or more pieces of materials together through heating/mixing them followed by cooling/solidification. The goal of welding manufacturing is to join materials together to meet service requirements at lowest costs. Advanced welding manufacturing is to use scientific methods to realize this goal. This paper views advanced welding manufacturing as a three step approach: (1) pre-design that selects process and joint design based on available processes (properties, capabilities, and costs); (2) design that uses models to predict the result from a given set of welding parameters and minimizes a cost function for optimizing the welding parameters; and (3) real-time sensing and control that overcome the deviations of welding conditions from their nominal ones used in optimizing the welding parameters by adjusting the welding parameters based on such real-time sensing and feedback control. The paper analyzes how these three steps depend on process properties/capabilities, process innovations, predictive models, numerical models for fluid dynamics, numerical models for structures, real-time sensing, and dynamic control. The paper also identifies the challenges in obtaining ideal solutions and reviews/analyzes the existing efforts toward better solutions. Special attention and analysis have been given to (1) gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) as benchmark processes for penetration and materials filling; (2) keyhole plasma arc welding (PAW), keyhole-tungsten inert gas (K-TIG), and keyhole laser welding as improved/capable penetrative processes; (3) friction stir welding (FSW) as a special penetrative low heat input process; (4) alternating current (AC) GMAW and double-electrode GMAW as improved materials filling processes; (5) efforts in numerical modeling for fluid dynamics; (6) efforts in numerical modeling for structures; (7) challenges and efforts in seam tracking and weld pool monitoring; (8) challenges and efforts in monitoring of keyhole laser welding and FSW; and (9) efforts in advanced sensing, data fusion/sensor fusion, and process control using machine learning/deep learning, model predictive control (MPC), and adaptive control.
    • Download: (553.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275391
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorZhang, Yu Ming
    contributor authorYang, Yu-Ping
    contributor authorZhang, Wei
    contributor authorNa, Suck-Joo
    date accessioned2022-02-04T22:20:57Z
    date available2022-02-04T22:20:57Z
    date copyright9/29/2020 12:00:00 AM
    date issued2020
    identifier issn1087-1357
    identifier othertsea_13_3_034501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275391
    description abstractWelding is a major manufacturing process that joins two or more pieces of materials together through heating/mixing them followed by cooling/solidification. The goal of welding manufacturing is to join materials together to meet service requirements at lowest costs. Advanced welding manufacturing is to use scientific methods to realize this goal. This paper views advanced welding manufacturing as a three step approach: (1) pre-design that selects process and joint design based on available processes (properties, capabilities, and costs); (2) design that uses models to predict the result from a given set of welding parameters and minimizes a cost function for optimizing the welding parameters; and (3) real-time sensing and control that overcome the deviations of welding conditions from their nominal ones used in optimizing the welding parameters by adjusting the welding parameters based on such real-time sensing and feedback control. The paper analyzes how these three steps depend on process properties/capabilities, process innovations, predictive models, numerical models for fluid dynamics, numerical models for structures, real-time sensing, and dynamic control. The paper also identifies the challenges in obtaining ideal solutions and reviews/analyzes the existing efforts toward better solutions. Special attention and analysis have been given to (1) gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) as benchmark processes for penetration and materials filling; (2) keyhole plasma arc welding (PAW), keyhole-tungsten inert gas (K-TIG), and keyhole laser welding as improved/capable penetrative processes; (3) friction stir welding (FSW) as a special penetrative low heat input process; (4) alternating current (AC) GMAW and double-electrode GMAW as improved materials filling processes; (5) efforts in numerical modeling for fluid dynamics; (6) efforts in numerical modeling for structures; (7) challenges and efforts in seam tracking and weld pool monitoring; (8) challenges and efforts in monitoring of keyhole laser welding and FSW; and (9) efforts in advanced sensing, data fusion/sensor fusion, and process control using machine learning/deep learning, model predictive control (MPC), and adaptive control.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdvanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions
    typeJournal Paper
    journal volume142
    journal issue11
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4047947
    journal fristpage0110816-1
    journal lastpage0110816-7
    page7
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian