Parallelized Multiscale Off-Road Vehicle Mobility Simulation Algorithm and Full-Scale Vehicle ValidationSource: Journal of Computational and Nonlinear Dynamics:;2020:;volume( 015 ):;issue: 009::page 091007-1Author:Yamashita, Hiroki
,
Chen, Guanchu
,
Ruan, Yeefeng
,
Jayakumar, Paramsothy
,
Sugiyama, Hiroyuki
DOI: 10.1115/1.4046666Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In this work, a scalable parallel computing scheme for the hierarchical multiscale off-road vehicle mobility simulation capability is developed with the hybrid message passing interface (MPI)/OpenMP framework, and it is validated against full-scale vehicle test data. While the hierarchical multiscale modeling approach has been introduced to high-fidelity off-road mobility simulations to eliminate limitations of existing single-scale deformable terrain models, computational complexities associated with the large dimensionality of multibody vehicle equations, involving nonlinear finite element tires and multiscale terrain models, need to be addressed for use in full-scale vehicle mobility predictions. To this end, a co-simulation framework for the multiscale off-road vehicle mobility model is proposed by exploiting the moving soil patch technique. This allows for systematically extracting four moving soil patches for four tires in a vehicle model from the deformable terrain domain, and time integrations of the four tire–soil subsystems are performed concurrently to enable computational speedup. Furthermore, an automated updating scheme for multiscale moving soil patches for a full vehicle model is developed, considering the multipass effect in various vehicle maneuvering scenarios. To demonstrate the off-road mobility prediction capability using the proposed parallelized multiscale vehicle–terrain interaction simulation algorithm, full-scale vehicle validation is presented for the vehicle drawbar pull as well as variable grade hill climb tests on soft soil.
|
Collections
Show full item record
| contributor author | Yamashita, Hiroki | |
| contributor author | Chen, Guanchu | |
| contributor author | Ruan, Yeefeng | |
| contributor author | Jayakumar, Paramsothy | |
| contributor author | Sugiyama, Hiroyuki | |
| date accessioned | 2022-02-04T22:19:29Z | |
| date available | 2022-02-04T22:19:29Z | |
| date copyright | 7/16/2020 12:00:00 AM | |
| date issued | 2020 | |
| identifier issn | 1555-1415 | |
| identifier other | cnd_015_09_091007.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4275340 | |
| description abstract | In this work, a scalable parallel computing scheme for the hierarchical multiscale off-road vehicle mobility simulation capability is developed with the hybrid message passing interface (MPI)/OpenMP framework, and it is validated against full-scale vehicle test data. While the hierarchical multiscale modeling approach has been introduced to high-fidelity off-road mobility simulations to eliminate limitations of existing single-scale deformable terrain models, computational complexities associated with the large dimensionality of multibody vehicle equations, involving nonlinear finite element tires and multiscale terrain models, need to be addressed for use in full-scale vehicle mobility predictions. To this end, a co-simulation framework for the multiscale off-road vehicle mobility model is proposed by exploiting the moving soil patch technique. This allows for systematically extracting four moving soil patches for four tires in a vehicle model from the deformable terrain domain, and time integrations of the four tire–soil subsystems are performed concurrently to enable computational speedup. Furthermore, an automated updating scheme for multiscale moving soil patches for a full vehicle model is developed, considering the multipass effect in various vehicle maneuvering scenarios. To demonstrate the off-road mobility prediction capability using the proposed parallelized multiscale vehicle–terrain interaction simulation algorithm, full-scale vehicle validation is presented for the vehicle drawbar pull as well as variable grade hill climb tests on soft soil. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Parallelized Multiscale Off-Road Vehicle Mobility Simulation Algorithm and Full-Scale Vehicle Validation | |
| type | Journal Paper | |
| journal volume | 15 | |
| journal issue | 9 | |
| journal title | Journal of Computational and Nonlinear Dynamics | |
| identifier doi | 10.1115/1.4046666 | |
| journal fristpage | 091007-1 | |
| journal lastpage | 091007-14 | |
| page | 14 | |
| tree | Journal of Computational and Nonlinear Dynamics:;2020:;volume( 015 ):;issue: 009 | |
| contenttype | Fulltext |