YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bilevel Flexible-Robust Optimization for Energy Allocation Problems

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 003::page 031002-1
    Author:
    Biswas, Arpan
    ,
    Chen, Yong
    ,
    Gibson, Nathan
    ,
    Hoyle, Christopher
    DOI: 10.1115/1.4046269
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A common issue in energy allocation problems is managing the tradeoff between selling surplus energy to maximize short-term revenue, versus holding surplus energy to hedge against future shortfalls. For energy allocation problems, this surplus represents resource flexibility. The decision maker has an option to sell or hold the flexibility for future use. As a decision in the current period can affect future decisions significantly, future risk evaluation of uncertainties is recommended for the current decision in which a traditional robust optimization is not efficient. Therefore, an approach to flexible-robust optimization has been formulated by integrating a real options (RO) model with the robust optimization framework. In the energy problem, the real option model evaluates the future risk, and provides the value of holding flexibility, whereas the robust optimization quantifies uncertainty and provides a robust solution of net revenue by selling flexibility. This problem is solved using bilevel programming and a complete general mathematical formulation of bilevel flexible-robust optimization model is presented for multireservoir systems and results shown to provide an efficient decision making process in energy sectors. To reduce the computational expense, mathematical techniques have been used in the proposed model to reduce the dimension in the quantification and propagation of uncertainties.
    • Download: (2.727Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bilevel Flexible-Robust Optimization for Energy Allocation Problems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275322
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorBiswas, Arpan
    contributor authorChen, Yong
    contributor authorGibson, Nathan
    contributor authorHoyle, Christopher
    date accessioned2022-02-04T22:18:55Z
    date available2022-02-04T22:18:55Z
    date copyright5/25/2020 12:00:00 AM
    date issued2020
    identifier issn2332-9017
    identifier otherrisk_006_03_031002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275322
    description abstractA common issue in energy allocation problems is managing the tradeoff between selling surplus energy to maximize short-term revenue, versus holding surplus energy to hedge against future shortfalls. For energy allocation problems, this surplus represents resource flexibility. The decision maker has an option to sell or hold the flexibility for future use. As a decision in the current period can affect future decisions significantly, future risk evaluation of uncertainties is recommended for the current decision in which a traditional robust optimization is not efficient. Therefore, an approach to flexible-robust optimization has been formulated by integrating a real options (RO) model with the robust optimization framework. In the energy problem, the real option model evaluates the future risk, and provides the value of holding flexibility, whereas the robust optimization quantifies uncertainty and provides a robust solution of net revenue by selling flexibility. This problem is solved using bilevel programming and a complete general mathematical formulation of bilevel flexible-robust optimization model is presented for multireservoir systems and results shown to provide an efficient decision making process in energy sectors. To reduce the computational expense, mathematical techniques have been used in the proposed model to reduce the dimension in the quantification and propagation of uncertainties.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBilevel Flexible-Robust Optimization for Energy Allocation Problems
    typeJournal Paper
    journal volume6
    journal issue3
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4046269
    journal fristpage031002-1
    journal lastpage031002-15
    page15
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian