YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Nuclear Engineering and Radiation Science
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Formation of Local, Transient “Acid Spikes” in the Fast Neutron Radiolysis of Supercritical Water at 400 °C: A Potential Source of Corrosion in Supercritical Water-Cooled Reactors?

    Source: Journal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 003::page 031101-1
    Author:
    Patwary, Md Mohsin
    ,
    Sanguanmith, Sunuchakan
    ,
    Meesungnoen, Jintana
    ,
    Jay-Gerin, Jean-Paul
    DOI: 10.1115/1.4044409
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The use of supercritical water (SCW) in GEN IV reactors is a logical approach to the ongoing development of nuclear energy. A proper understanding of the radiation chemistry and reactivities of transients in a reactor core under SCW conditions is required to achieve optimal water chemistry control and safety. A Monte Carlo simulation study of the radiolysis of SCW at 400 °C by incident 2 MeV monoenergetic neutrons (taken as representative of a fast neutron flux in a reactor) was carried out as a function of water density between ∼150 and 600 kg/m3. The in situ formation of H3O+ by the generated recoil protons was shown to render the “native” track regions temporarily very acidic (pH ∼ 1). This acidity, though local and transitory (“acid spikes”), raises the question whether it may promote a corrosive environment under proposed SCW-cooled reactor operating conditions that would lead to progressive degradation of reactor components.
    • Download: (576.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Formation of Local, Transient “Acid Spikes” in the Fast Neutron Radiolysis of Supercritical Water at 400 °C: A Potential Source of Corrosion in Supercritical Water-Cooled Reactors?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275217
    Collections
    • Journal of Nuclear Engineering and Radiation Science

    Show full item record

    contributor authorPatwary, Md Mohsin
    contributor authorSanguanmith, Sunuchakan
    contributor authorMeesungnoen, Jintana
    contributor authorJay-Gerin, Jean-Paul
    date accessioned2022-02-04T22:15:57Z
    date available2022-02-04T22:15:57Z
    date copyright6/5/2020 12:00:00 AM
    date issued2020
    identifier issn2332-8983
    identifier otherners_006_03_031101.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275217
    description abstractThe use of supercritical water (SCW) in GEN IV reactors is a logical approach to the ongoing development of nuclear energy. A proper understanding of the radiation chemistry and reactivities of transients in a reactor core under SCW conditions is required to achieve optimal water chemistry control and safety. A Monte Carlo simulation study of the radiolysis of SCW at 400 °C by incident 2 MeV monoenergetic neutrons (taken as representative of a fast neutron flux in a reactor) was carried out as a function of water density between ∼150 and 600 kg/m3. The in situ formation of H3O+ by the generated recoil protons was shown to render the “native” track regions temporarily very acidic (pH ∼ 1). This acidity, though local and transitory (“acid spikes”), raises the question whether it may promote a corrosive environment under proposed SCW-cooled reactor operating conditions that would lead to progressive degradation of reactor components.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFormation of Local, Transient “Acid Spikes” in the Fast Neutron Radiolysis of Supercritical Water at 400 °C: A Potential Source of Corrosion in Supercritical Water-Cooled Reactors?
    typeJournal Paper
    journal volume6
    journal issue3
    journal titleJournal of Nuclear Engineering and Radiation Science
    identifier doi10.1115/1.4044409
    journal fristpage031101-1
    journal lastpage031101-6
    page6
    treeJournal of Nuclear Engineering and Radiation Science:;2020:;volume( 006 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian