YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High Dimensional Matching Optimization of Impeller–Vaned Diffuser Interaction for a Centrifugal Compressor Stage

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 012::page 0121004-1
    Author:
    Qin, Ruihong
    ,
    Ju, Yaping
    ,
    Galloway, Lee
    ,
    Spence, Stephen
    ,
    Zhang, Chuhua
    DOI: 10.1115/1.4047898
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The matching and interaction between the impeller and vaned diffuser is the most important aerodynamic-coupling between the components of a high-speed centrifugal compressor. Many research studies have been carried out during the last decade, both experimentally and numerically, on the flow mechanisms underlying impeller–vaned diffuser matching and interaction, with the aim of achieving a high-performance stage. However, the published work lacks any study that optimizes the matching of the impeller–vaned diffuser components in the environment of a full compressor stage due to two unresolved issues, i.e., identifying an effective matching optimization strategy and the high dimensional nature of the problem. To tackle these difficulties, four different optimization strategies (i.e., (1) integrated, (2) single component, (3) parallel, and (4) sequential optimization strategies) have been proposed and validated through a high dimensional matching optimization of the Radiver compressor test case published by the Institute of Jet Propulsion and Turbomachinery at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University. Particular attention has been paid to the slope of the diffuser total pressure ratio characteristic near the surge point to further extend the stage surge margin. The results showed that the integrated optimization strategy was the most effective one for achieving good matching of the impeller–vaned diffuser interaction due to its inherently strong coupling optimization. Compared with the baseline compressor, the optimized stage achieved a gain of 1.2% in total-to-total isentropic efficiency at the peak efficiency point as well as a predicted 26.17% increase in stable operating range. For the stage examined in this study, a fore-loaded design of impeller blade as well as an increased vane angle for the diffuser vane was beneficial to the impeller–vaned diffuser matching. The more uniform spanwise distributions of the impeller discharge flow angle and the diffuser vane incidence presented the opportunity for a more optimized matching of the flow field between the 3D impeller and the 2D vaned diffuser. The outcomes of this work are particularly relevant for the advanced design of high-speed centrifugal compressors.
    • Download: (701.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High Dimensional Matching Optimization of Impeller–Vaned Diffuser Interaction for a Centrifugal Compressor Stage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275153
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorQin, Ruihong
    contributor authorJu, Yaping
    contributor authorGalloway, Lee
    contributor authorSpence, Stephen
    contributor authorZhang, Chuhua
    date accessioned2022-02-04T22:14:09Z
    date available2022-02-04T22:14:09Z
    date copyright10/19/2020 12:00:00 AM
    date issued2020
    identifier issn0889-504X
    identifier othermd_142_12_124501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275153
    description abstractThe matching and interaction between the impeller and vaned diffuser is the most important aerodynamic-coupling between the components of a high-speed centrifugal compressor. Many research studies have been carried out during the last decade, both experimentally and numerically, on the flow mechanisms underlying impeller–vaned diffuser matching and interaction, with the aim of achieving a high-performance stage. However, the published work lacks any study that optimizes the matching of the impeller–vaned diffuser components in the environment of a full compressor stage due to two unresolved issues, i.e., identifying an effective matching optimization strategy and the high dimensional nature of the problem. To tackle these difficulties, four different optimization strategies (i.e., (1) integrated, (2) single component, (3) parallel, and (4) sequential optimization strategies) have been proposed and validated through a high dimensional matching optimization of the Radiver compressor test case published by the Institute of Jet Propulsion and Turbomachinery at Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University. Particular attention has been paid to the slope of the diffuser total pressure ratio characteristic near the surge point to further extend the stage surge margin. The results showed that the integrated optimization strategy was the most effective one for achieving good matching of the impeller–vaned diffuser interaction due to its inherently strong coupling optimization. Compared with the baseline compressor, the optimized stage achieved a gain of 1.2% in total-to-total isentropic efficiency at the peak efficiency point as well as a predicted 26.17% increase in stable operating range. For the stage examined in this study, a fore-loaded design of impeller blade as well as an increased vane angle for the diffuser vane was beneficial to the impeller–vaned diffuser matching. The more uniform spanwise distributions of the impeller discharge flow angle and the diffuser vane incidence presented the opportunity for a more optimized matching of the flow field between the 3D impeller and the 2D vaned diffuser. The outcomes of this work are particularly relevant for the advanced design of high-speed centrifugal compressors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHigh Dimensional Matching Optimization of Impeller–Vaned Diffuser Interaction for a Centrifugal Compressor Stage
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4047898
    journal fristpage0121004-1
    journal lastpage0121004-7
    page7
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian