YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computational and Nonlinear Dynamics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamics at Infinity and Existence of Singularly Degenerate Heteroclinic Cycles in Maxwell–Bloch System

    Source: Journal of Computational and Nonlinear Dynamics:;2020:;volume( 015 ):;issue: 010::page 0101007-1
    Author:
    Chen, Haimei
    ,
    Liu, Yongjian
    ,
    Feng, Chunsheng
    ,
    Liu, Aimin
    ,
    Huang, Xiezhen
    DOI: 10.1115/1.4047914
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, global dynamics of the Maxwell–Bloch system is discussed. First, the complete description of its dynamic behavior on the sphere at infinity is presented by using the Poincaré compactification in R3. Second, the existence of singularly degenerate heteroclinic cycles is investigated. It is proved that for a suitable choice of the parameters, there is an infinite set of singularly degenerate heteroclinic cycles in Maxwell–Bloch system. Specially, the chaotic attractors are found nearby singularly degenerate heteroclinic cycles in Maxwell–Bloch system by combining theoretical and numerical analyses for a special parameter value. It is hoped that these theoretical and numerical value results are given a contribution in an understanding of the physical essence for chaos in the Maxwell–Bloch system.
    • Download: (2.378Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamics at Infinity and Existence of Singularly Degenerate Heteroclinic Cycles in Maxwell–Bloch System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275116
    Collections
    • Journal of Computational and Nonlinear Dynamics

    Show full item record

    contributor authorChen, Haimei
    contributor authorLiu, Yongjian
    contributor authorFeng, Chunsheng
    contributor authorLiu, Aimin
    contributor authorHuang, Xiezhen
    date accessioned2022-02-04T22:13:06Z
    date available2022-02-04T22:13:06Z
    date copyright8/7/2020 12:00:00 AM
    date issued2020
    identifier issn1555-1415
    identifier othermanu_143_1_011004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275116
    description abstractIn this paper, global dynamics of the Maxwell–Bloch system is discussed. First, the complete description of its dynamic behavior on the sphere at infinity is presented by using the Poincaré compactification in R3. Second, the existence of singularly degenerate heteroclinic cycles is investigated. It is proved that for a suitable choice of the parameters, there is an infinite set of singularly degenerate heteroclinic cycles in Maxwell–Bloch system. Specially, the chaotic attractors are found nearby singularly degenerate heteroclinic cycles in Maxwell–Bloch system by combining theoretical and numerical analyses for a special parameter value. It is hoped that these theoretical and numerical value results are given a contribution in an understanding of the physical essence for chaos in the Maxwell–Bloch system.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDynamics at Infinity and Existence of Singularly Degenerate Heteroclinic Cycles in Maxwell–Bloch System
    typeJournal Paper
    journal volume15
    journal issue10
    journal titleJournal of Computational and Nonlinear Dynamics
    identifier doi10.1115/1.4047914
    journal fristpage0101007-1
    journal lastpage0101007-12
    page12
    treeJournal of Computational and Nonlinear Dynamics:;2020:;volume( 015 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian