YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Self-Support Topology Optimization With Horizontal Overhangs for Additive Manufacturing

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 009::page 091003-1
    Author:
    Liu, Jikai
    ,
    Yu, Huangchao
    DOI: 10.1115/1.4047352
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Most of the existing self-support topology optimization methods restrict the overhang inclination angle to be larger than the self-support threshold value. However, for some additive manufacturing processes, such as fused deposition modeling, horizontal overhangs with zero inclination angle could be successfully printed while the overhang size plays a key role in determining the printability. Therefore, the self-support threshold condition should be re-developed to comprehensively consider the overhang size and inclination angle. At the same time, there raises the challenges of formulating the self-support constraints based on the new threshold condition. To address this difficulty, a novel method is proposed in this work to realize the design with horizontal overhangs. To be specific, the new method employs a skeleton-based structure decomposition approach to divide the structure into components based on the connectivity condition. Then, each component will be evaluated about its self-support status based on its overhang length and inclination angle. Finally, the self-support constraint will be activated only for those components that violate the threshold condition. An excellent feature of the method is that it can be adapted to address the only inclination angle self-support condition, or the comprehensive self-support condition that simultaneously considers the overhang length and inclination angle. Therefore, the new method serves for general applications to different additive manufacturing (AM) processes. Numerical examples will be studied to demonstrate the effectiveness of the proposed method.
    • Download: (1.514Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Self-Support Topology Optimization With Horizontal Overhangs for Additive Manufacturing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275111
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorLiu, Jikai
    contributor authorYu, Huangchao
    date accessioned2022-02-04T22:12:56Z
    date available2022-02-04T22:12:56Z
    date copyright6/11/2020 12:00:00 AM
    date issued2020
    identifier issn1087-1357
    identifier othermanu_142_9_091003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275111
    description abstractMost of the existing self-support topology optimization methods restrict the overhang inclination angle to be larger than the self-support threshold value. However, for some additive manufacturing processes, such as fused deposition modeling, horizontal overhangs with zero inclination angle could be successfully printed while the overhang size plays a key role in determining the printability. Therefore, the self-support threshold condition should be re-developed to comprehensively consider the overhang size and inclination angle. At the same time, there raises the challenges of formulating the self-support constraints based on the new threshold condition. To address this difficulty, a novel method is proposed in this work to realize the design with horizontal overhangs. To be specific, the new method employs a skeleton-based structure decomposition approach to divide the structure into components based on the connectivity condition. Then, each component will be evaluated about its self-support status based on its overhang length and inclination angle. Finally, the self-support constraint will be activated only for those components that violate the threshold condition. An excellent feature of the method is that it can be adapted to address the only inclination angle self-support condition, or the comprehensive self-support condition that simultaneously considers the overhang length and inclination angle. Therefore, the new method serves for general applications to different additive manufacturing (AM) processes. Numerical examples will be studied to demonstrate the effectiveness of the proposed method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSelf-Support Topology Optimization With Horizontal Overhangs for Additive Manufacturing
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4047352
    journal fristpage091003-1
    journal lastpage091003-14
    page14
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian