YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stable Grasp Control With a Robotic Exoskeleton Glove

    Source: Journal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 006::page 061015-1
    Author:
    Vanteddu, Teja
    ,
    Ben-Tzvi, Pinhas
    DOI: 10.1115/1.4047724
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An exoskeleton robotic glove intended for patients who have suffered paralysis of the hand due to stroke or other factors has been developed and integrated. The robotic glove has the potential to aid patients with grasping objects as part of their daily life activities. Grasp stability was studied and researched by various research groups, but mainly focused on robotic grippers by devising conditions for a stable grasp of objects. Maintaining grasp stability is important so as to reduce the chances of the object slipping and dropping. But there was little focus on the grasp stability of robotic exoskeleton gloves, and most of the research was focused on mechanical design. A robotic exoskeleton glove was developed as well as novel methods to improve the grasp stability. The glove is constructed with rigidly coupled four-bar linkages attached to the finger tips. Each linkage mechanism has one-DOF (degree of freedom) and is actuated by a linear series elastic actuator (SEA). Two methods were developed to satisfy two of the conditions required for a stable grasp. These include deformation prevention of soft objects, and maintaining force and moment equilibrium of the objects being grasped. Simulations were performed to validate the performance of the proposed algorithms. A battery of experiments was performed on the integrated prototype in order to validate the performance of the algorithms developed.
    • Download: (587.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stable Grasp Control With a Robotic Exoskeleton Glove

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275090
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorVanteddu, Teja
    contributor authorBen-Tzvi, Pinhas
    date accessioned2022-02-04T22:12:17Z
    date available2022-02-04T22:12:17Z
    date copyright7/28/2020 12:00:00 AM
    date issued2020
    identifier issn1942-4302
    identifier othermanu_142_11_110803.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275090
    description abstractAn exoskeleton robotic glove intended for patients who have suffered paralysis of the hand due to stroke or other factors has been developed and integrated. The robotic glove has the potential to aid patients with grasping objects as part of their daily life activities. Grasp stability was studied and researched by various research groups, but mainly focused on robotic grippers by devising conditions for a stable grasp of objects. Maintaining grasp stability is important so as to reduce the chances of the object slipping and dropping. But there was little focus on the grasp stability of robotic exoskeleton gloves, and most of the research was focused on mechanical design. A robotic exoskeleton glove was developed as well as novel methods to improve the grasp stability. The glove is constructed with rigidly coupled four-bar linkages attached to the finger tips. Each linkage mechanism has one-DOF (degree of freedom) and is actuated by a linear series elastic actuator (SEA). Two methods were developed to satisfy two of the conditions required for a stable grasp. These include deformation prevention of soft objects, and maintaining force and moment equilibrium of the objects being grasped. Simulations were performed to validate the performance of the proposed algorithms. A battery of experiments was performed on the integrated prototype in order to validate the performance of the algorithms developed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStable Grasp Control With a Robotic Exoskeleton Glove
    typeJournal Paper
    journal volume12
    journal issue6
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4047724
    journal fristpage061015-1
    journal lastpage061015-11
    page11
    treeJournal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian