YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Kick Detection Using Downhole Accelerometer Data

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 008::page 082901-1
    Author:
    Samuel, Robello
    DOI: 10.1115/1.4046939
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The high-frequency downhole vibration data include a greater amount of hidden information than the low-frequency surface data. This paper proposes the monitoring of high-frequency acceleration data for early kick detection. The trend of accelerator sensor values is monitored, rather than processed. When the gas, fluid, or oil kick occurs, the fluid influx reduces the viscosity of the fluid in annulus, which causes the degradation of the damping factor. The sensor installed on the drillpipe detects the velocity/acceleration change that results in the damping factor change. This approach includes an analytical model to calculate the effect of the damping ratio on the acceleration calculations. The fluid influx and migration in the wellbore strongly affect the damping factor. The paper presents a method of deconvoluting the sensor values that uses a combination of minimum entropy deconvolution and Teager-Kaiser energy operator to remove the noise, unwanted sensor values, and likelihood of false prediction. It is then proposed to calculate instantaneous jerk and jerk intensity at each depth. The trend of the final intrinsic mode functions (IMF) at each depth is continuously monitored to predict the formation influx, if any. A novel concept of monitoring the incremental IMF and IMF energy at each depth is introduced. This technique is shown to reveal a wealth of information and simplifies the process of monitoring and analyzing the vast amount of available data. The methodology developed is applied to extract the essential information from high-frequency vibration data to make real-time data monitoring straightforward, reliable, and fast.
    • Download: (930.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Kick Detection Using Downhole Accelerometer Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275014
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorSamuel, Robello
    date accessioned2022-02-04T22:10:08Z
    date available2022-02-04T22:10:08Z
    date copyright5/26/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_8_082901.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275014
    description abstractThe high-frequency downhole vibration data include a greater amount of hidden information than the low-frequency surface data. This paper proposes the monitoring of high-frequency acceleration data for early kick detection. The trend of accelerator sensor values is monitored, rather than processed. When the gas, fluid, or oil kick occurs, the fluid influx reduces the viscosity of the fluid in annulus, which causes the degradation of the damping factor. The sensor installed on the drillpipe detects the velocity/acceleration change that results in the damping factor change. This approach includes an analytical model to calculate the effect of the damping ratio on the acceleration calculations. The fluid influx and migration in the wellbore strongly affect the damping factor. The paper presents a method of deconvoluting the sensor values that uses a combination of minimum entropy deconvolution and Teager-Kaiser energy operator to remove the noise, unwanted sensor values, and likelihood of false prediction. It is then proposed to calculate instantaneous jerk and jerk intensity at each depth. The trend of the final intrinsic mode functions (IMF) at each depth is continuously monitored to predict the formation influx, if any. A novel concept of monitoring the incremental IMF and IMF energy at each depth is introduced. This technique is shown to reveal a wealth of information and simplifies the process of monitoring and analyzing the vast amount of available data. The methodology developed is applied to extract the essential information from high-frequency vibration data to make real-time data monitoring straightforward, reliable, and fast.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleKick Detection Using Downhole Accelerometer Data
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4046939
    journal fristpage082901-1
    journal lastpage082901-8
    page8
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian