YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Data-Driven Models to Predict Hydrocarbon Production From Unconventional Reservoirs by Thermal Recovery

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012::page 0123301-1
    Author:
    Lee, Kyung Jae
    DOI: 10.1115/1.4047309
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the numerical simulations of thermal recovery for unconventional resources, reservoir models involve complex multicomponent-multiphase flow in non-isothermal conditions, where spatial heterogeneity necessitates the huge number of discretized elements. Proxy modeling approaches have been applied to efficiently approximate solutions of reservoir simulations in such complex problems. In this study, we apply machine learning technologies to the thermal recovery of unconventional resources, for the efficient computation and prediction of hydrocarbon production. We develop data-driven models applying artificial neural network (ANN) to predict hydrocarbon productions under heterogeneous and unknown properties of unconventional reservoirs. We study two different thermal recovery methods—expanding solvent steam-assisted gravity drainage for bitumen and in-situ upgrading of oil shale. We obtain training datasets by running high-fidelity simulation models for these two problems. As training datasets of ANN models, diverse input and output data of phase and component productions are generated, by considering heterogeneity and uncertainty. In the bitumen reservoirs, diverse permeability anisotropies are considered as unknown properties. Similarly, in the oil shale reservoirs, diverse kerogen decomposition kinetics are considered. The performance of data-driven models is evaluated with respect to the position of the test dataset. When the test data is inside of the boundary of training datasets, the developed data-driven models based on ANN reliably predict the cumulative productions at the end of the recovery processes. However, when the test data is at the boundary of training datasets, physical insight plays a significant role to provide a reliable performance of data-driven models.
    • Download: (2.263Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Data-Driven Models to Predict Hydrocarbon Production From Unconventional Reservoirs by Thermal Recovery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4275005
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorLee, Kyung Jae
    date accessioned2022-02-04T22:09:49Z
    date available2022-02-04T22:09:49Z
    date copyright6/12/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_12_123301.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275005
    description abstractIn the numerical simulations of thermal recovery for unconventional resources, reservoir models involve complex multicomponent-multiphase flow in non-isothermal conditions, where spatial heterogeneity necessitates the huge number of discretized elements. Proxy modeling approaches have been applied to efficiently approximate solutions of reservoir simulations in such complex problems. In this study, we apply machine learning technologies to the thermal recovery of unconventional resources, for the efficient computation and prediction of hydrocarbon production. We develop data-driven models applying artificial neural network (ANN) to predict hydrocarbon productions under heterogeneous and unknown properties of unconventional reservoirs. We study two different thermal recovery methods—expanding solvent steam-assisted gravity drainage for bitumen and in-situ upgrading of oil shale. We obtain training datasets by running high-fidelity simulation models for these two problems. As training datasets of ANN models, diverse input and output data of phase and component productions are generated, by considering heterogeneity and uncertainty. In the bitumen reservoirs, diverse permeability anisotropies are considered as unknown properties. Similarly, in the oil shale reservoirs, diverse kerogen decomposition kinetics are considered. The performance of data-driven models is evaluated with respect to the position of the test dataset. When the test data is inside of the boundary of training datasets, the developed data-driven models based on ANN reliably predict the cumulative productions at the end of the recovery processes. However, when the test data is at the boundary of training datasets, physical insight plays a significant role to provide a reliable performance of data-driven models.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleData-Driven Models to Predict Hydrocarbon Production From Unconventional Reservoirs by Thermal Recovery
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4047309
    journal fristpage0123301-1
    journal lastpage0123301-17
    page17
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian