YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Limitations of Natural Gas Lean Burn Spark Ignition Engines Derived From Compression Ignition Engines

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012::page 0122308-1
    Author:
    Liu, Jinlong
    ,
    Dumitrescu, Cosmin Emil
    DOI: 10.1115/1.4047404
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Converting existing diesel engines to the spark ignition (SI) operation can increase the utilization of natural gas (NG) in heavy-duty applications, which can reduce oil imports in the US and curtail greenhouse-gas emissions. The NG operation at lean-burn conditions was evaluated inside a retrofitted heavy-duty direct-injection compression-ignition (CI) engine, where the diesel injector was replaced with a high-energy spark plug and NG was mixed with air in the intake manifold. Steady-state engine experiments that changed combustion phasing were performed at 13.3 compression ratio, lean equivalence ratio, medium load, and low-speed conditions, fueled with pure methane as NG surrogate. Results suggested that NG combustion inside such retrofitted engines is different from that in conventional SI engines due to the geometric characteristics of the diesel combustion chamber. In detail, the different conditions inside the bowl and the squish partitioned the combustion process into two distinct events in terms of timing and location. Moreover, the squish region helped stabilize the extreme lean operation by creating a highly turbulent flow into the bowl during the compression stroke. However, combustion efficiency and unburned hydrocarbon emissions were significantly affected by the fuel fraction that burned inside the squish region under less than optimal conditions during the expansion stroke. As a result, despite the combustion phasing being the primary control of engine’s indicated thermal efficiency, the combustion strategy for CI engines converted to NG SI should optimize the slower burning inside the squish region.
    • Download: (1.414Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Limitations of Natural Gas Lean Burn Spark Ignition Engines Derived From Compression Ignition Engines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274997
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorLiu, Jinlong
    contributor authorDumitrescu, Cosmin Emil
    date accessioned2022-02-04T22:09:36Z
    date available2022-02-04T22:09:36Z
    date copyright6/25/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_12_122308.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274997
    description abstractConverting existing diesel engines to the spark ignition (SI) operation can increase the utilization of natural gas (NG) in heavy-duty applications, which can reduce oil imports in the US and curtail greenhouse-gas emissions. The NG operation at lean-burn conditions was evaluated inside a retrofitted heavy-duty direct-injection compression-ignition (CI) engine, where the diesel injector was replaced with a high-energy spark plug and NG was mixed with air in the intake manifold. Steady-state engine experiments that changed combustion phasing were performed at 13.3 compression ratio, lean equivalence ratio, medium load, and low-speed conditions, fueled with pure methane as NG surrogate. Results suggested that NG combustion inside such retrofitted engines is different from that in conventional SI engines due to the geometric characteristics of the diesel combustion chamber. In detail, the different conditions inside the bowl and the squish partitioned the combustion process into two distinct events in terms of timing and location. Moreover, the squish region helped stabilize the extreme lean operation by creating a highly turbulent flow into the bowl during the compression stroke. However, combustion efficiency and unburned hydrocarbon emissions were significantly affected by the fuel fraction that burned inside the squish region under less than optimal conditions during the expansion stroke. As a result, despite the combustion phasing being the primary control of engine’s indicated thermal efficiency, the combustion strategy for CI engines converted to NG SI should optimize the slower burning inside the squish region.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLimitations of Natural Gas Lean Burn Spark Ignition Engines Derived From Compression Ignition Engines
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4047404
    journal fristpage0122308-1
    journal lastpage0122308-9
    page9
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian