YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012::page 0122306-1
    Author:
    Gürbüz, Habib
    ,
    Demirtürk, Selim
    DOI: 10.1115/1.4047328
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper investigated the effect of different substitution ratios of neat ethanol (E100) and ethanol–gasoline blend E85 on in-cylinder combustion, engine efficiency, and exhaust emissions, in a dual-fuel diesel engine, using the ethanol–diesel blend (DE95). Experimental studies realized at 1400 rpm, 1600 rpm, and 1800 rpm engine speeds under constant engine load of 50% (20 Nm). For each engine speed, the injection timing of diesel and E95 fuels at 24 °CA bTDC kept constant while low-reactivity fuels (i.e., E100 and E85) substitution ratio changed in the range of 59–83%. The results showed that premixed fuels in different SRs have an impact on shaping engine emissions, ignition delay (ID), in-cylinder pressure, and heat-release rate. Also, at the dual-fuel experimental studies in all engine speeds, NOx about 47–67% decrease compared to single fuel conditions of reference diesel and DE95, and smoke opacity remained unchanged around 0.1 FSN, whereas HC and CO increased in the range of 20–50%. However, E85/DE95 and E100/DE95 dual-fuel combustion achieved lower brake thermal efficiency (BTE) and combustion efficiency compared to single diesel fuel combustion. On the other hand, in dual-fuel combustion conditions, despite the low combustion efficiency, premixed E85 fuel offered higher engine efficiency and lower exhaust emissions than E100.
    • Download: (1.365Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274994
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorGürbüz, Habib
    contributor authorDemirtürk, Selim
    date accessioned2022-02-04T22:09:30Z
    date available2022-02-04T22:09:30Z
    date copyright6/12/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_12_122306.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274994
    description abstractThis paper investigated the effect of different substitution ratios of neat ethanol (E100) and ethanol–gasoline blend E85 on in-cylinder combustion, engine efficiency, and exhaust emissions, in a dual-fuel diesel engine, using the ethanol–diesel blend (DE95). Experimental studies realized at 1400 rpm, 1600 rpm, and 1800 rpm engine speeds under constant engine load of 50% (20 Nm). For each engine speed, the injection timing of diesel and E95 fuels at 24 °CA bTDC kept constant while low-reactivity fuels (i.e., E100 and E85) substitution ratio changed in the range of 59–83%. The results showed that premixed fuels in different SRs have an impact on shaping engine emissions, ignition delay (ID), in-cylinder pressure, and heat-release rate. Also, at the dual-fuel experimental studies in all engine speeds, NOx about 47–67% decrease compared to single fuel conditions of reference diesel and DE95, and smoke opacity remained unchanged around 0.1 FSN, whereas HC and CO increased in the range of 20–50%. However, E85/DE95 and E100/DE95 dual-fuel combustion achieved lower brake thermal efficiency (BTE) and combustion efficiency compared to single diesel fuel combustion. On the other hand, in dual-fuel combustion conditions, despite the low combustion efficiency, premixed E85 fuel offered higher engine efficiency and lower exhaust emissions than E100.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4047328
    journal fristpage0122306-1
    journal lastpage0122306-10
    page10
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian