YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Theoretical Studies for Improving the Performance of a Modified Shape Savonius Wind Turbine

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012::page 0121303-1
    Author:
    El-Askary, W. A.
    ,
    Saad, Ahmed S.
    ,
    AbdelSalam, Ali M.
    ,
    Sakr, I. M.
    DOI: 10.1115/1.4047326
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, measurements and computations are performed to study the performance of a 45-deg twisted Savonius rotor with a modified profile, at various overlap ratios (δ), aspect ratios (AR), and wind velocity (V). A free air jet test rig is used to carry out the experiments, while three-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations are used, in conjunction with the renormalization group (RNG) k–ɛ turbulence model, to perform the computations. The present experimental results successfully verify the simulation predictions obtained by the selected turbulence model. The RNG k–ɛ turbulence model has been chosen based on previous tests performed and published by the authors. Furthermore, both torque coefficient (CT) and power coefficient (CP) are numerically predicted at various tip speed ratios (λ) for overlap ratios (δ) ranging from 0.0 to 0.5, aspect ratios (AR) ranging from 0.75 to 3, and wind velocity values ranging from 4 to 18 m/s. Unlike the conventional rotor, the present twisted rotor with a modified profile produces significant performance improvement in the case of modified rotor without overlapping (δ = 0.0). Moreover, the peaks of CT and CP of the twisted rotor with the modified profile are enhanced with the increase in the aspect ratio. However, the percentage increase is noticed to be insignificant for AR greater than two. The maximum power coefficient (CPmax) for the twisted rotor with the modified profile and optimized design is 0.305 at a wind velocity of 6 m/s, with a performance gain of 75.3% compared to the conventional Savonius wind rotor which has CPmax=0.174.
    • Download: (1.871Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Theoretical Studies for Improving the Performance of a Modified Shape Savonius Wind Turbine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274982
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorEl-Askary, W. A.
    contributor authorSaad, Ahmed S.
    contributor authorAbdelSalam, Ali M.
    contributor authorSakr, I. M.
    date accessioned2022-02-04T22:09:08Z
    date available2022-02-04T22:09:08Z
    date copyright6/12/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_12_121303.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274982
    description abstractIn this paper, measurements and computations are performed to study the performance of a 45-deg twisted Savonius rotor with a modified profile, at various overlap ratios (δ), aspect ratios (AR), and wind velocity (V). A free air jet test rig is used to carry out the experiments, while three-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations are used, in conjunction with the renormalization group (RNG) k–ɛ turbulence model, to perform the computations. The present experimental results successfully verify the simulation predictions obtained by the selected turbulence model. The RNG k–ɛ turbulence model has been chosen based on previous tests performed and published by the authors. Furthermore, both torque coefficient (CT) and power coefficient (CP) are numerically predicted at various tip speed ratios (λ) for overlap ratios (δ) ranging from 0.0 to 0.5, aspect ratios (AR) ranging from 0.75 to 3, and wind velocity values ranging from 4 to 18 m/s. Unlike the conventional rotor, the present twisted rotor with a modified profile produces significant performance improvement in the case of modified rotor without overlapping (δ = 0.0). Moreover, the peaks of CT and CP of the twisted rotor with the modified profile are enhanced with the increase in the aspect ratio. However, the percentage increase is noticed to be insignificant for AR greater than two. The maximum power coefficient (CPmax) for the twisted rotor with the modified profile and optimized design is 0.305 at a wind velocity of 6 m/s, with a performance gain of 75.3% compared to the conventional Savonius wind rotor which has CPmax=0.174.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental and Theoretical Studies for Improving the Performance of a Modified Shape Savonius Wind Turbine
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4047326
    journal fristpage0121303-1
    journal lastpage0121303-12
    page12
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian