YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Particulate Morphology Characterization of Butanol–Gasoline Blend Fueled Spark-Ignition Direct Injection Engine

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 010::page 0102303-1
    Author:
    Sharma, Nikhil
    ,
    Agarwal, Avinash Kumar
    DOI: 10.1115/1.4047019
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Butanol is an oxygenated renewable fuel and therefore is a potential candidate to be blended with gasoline to reduce particulate emissions. In this experimental investigation, particle number-size (PN-size) distribution and morphology (physical characterization) of soot emitted by the butanol–gasoline blend in a gasoline direct injection (GDI) engine have been investigated. The effect of engine load and fuel injection pressure (FIP) on particulates was investigated for two test fuels: gasoline and Bu15 (85%, v/v, gasoline blended with 15%, v/v, butanol) in a 0.5 L single-cylinder GDI engine using an engine exhaust particulate sizer (EEPS) and a partial flow dilution tunnel for collecting particulate samples on a filter paper. The physical characterization of particulates included primary particle size (Dp) and particle agglomerate characterization parameters such as agglomerate length (L), agglomerate width (W), skeletal length (Lsk) and skeletal width (Wsk), which were determined using a transmission electron microscope (TEM) and corresponding image analyses. PN-size distribution was relatively lower for Bu15, which decreased with increasing FIP. Regardless of the GDI engine operating condition, classical sphere and chain-like agglomerates having nearly similar nano-scale morphology were detected. The primary particle diameter changed with varying engine operating conditions. A comparative analysis of soot originating from Bu15 and gasoline was presented, which may be useful for gasoline particulate filter (GPF) design and to understand the regeneration of GPFs in practical engine applications.
    • Download: (2.089Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Particulate Morphology Characterization of Butanol–Gasoline Blend Fueled Spark-Ignition Direct Injection Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274947
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorSharma, Nikhil
    contributor authorAgarwal, Avinash Kumar
    date accessioned2022-02-04T22:08:10Z
    date available2022-02-04T22:08:10Z
    date copyright5/26/2020 12:00:00 AM
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_10_102303.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274947
    description abstractButanol is an oxygenated renewable fuel and therefore is a potential candidate to be blended with gasoline to reduce particulate emissions. In this experimental investigation, particle number-size (PN-size) distribution and morphology (physical characterization) of soot emitted by the butanol–gasoline blend in a gasoline direct injection (GDI) engine have been investigated. The effect of engine load and fuel injection pressure (FIP) on particulates was investigated for two test fuels: gasoline and Bu15 (85%, v/v, gasoline blended with 15%, v/v, butanol) in a 0.5 L single-cylinder GDI engine using an engine exhaust particulate sizer (EEPS) and a partial flow dilution tunnel for collecting particulate samples on a filter paper. The physical characterization of particulates included primary particle size (Dp) and particle agglomerate characterization parameters such as agglomerate length (L), agglomerate width (W), skeletal length (Lsk) and skeletal width (Wsk), which were determined using a transmission electron microscope (TEM) and corresponding image analyses. PN-size distribution was relatively lower for Bu15, which decreased with increasing FIP. Regardless of the GDI engine operating condition, classical sphere and chain-like agglomerates having nearly similar nano-scale morphology were detected. The primary particle diameter changed with varying engine operating conditions. A comparative analysis of soot originating from Bu15 and gasoline was presented, which may be useful for gasoline particulate filter (GPF) design and to understand the regeneration of GPFs in practical engine applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParticulate Morphology Characterization of Butanol–Gasoline Blend Fueled Spark-Ignition Direct Injection Engine
    typeJournal Paper
    journal volume142
    journal issue10
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4047019
    journal fristpage0102303-1
    journal lastpage0102303-10
    page10
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian