YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Equivalent Constitutive Model of Cancellous Bone With Fracture Prediction

    Source: Journal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 012::page 0121004-1
    Author:
    Salem, Mohammad
    ,
    Westover, Lindsey
    ,
    Adeeb, Samer
    ,
    Duke, Kajsa
    DOI: 10.1115/1.4047080
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To simulate the mechanical and fracture behaviors of cancellous bone in three anatomical directions and to develop an equivalent constitutive model. Microscale extended finite element method (XFEM) models of a cancellous specimen were developed with mechanical behaviors in three anatomical directions. An appropriate abaqus macroscale model replicated the behavior observed in the microscale models. The parameters were defined based on the intermediate bone material properties in the anatomical directions and assigned to an equivalent nonporous specimen of the same size. The equivalent model capability was analyzed by comparing the micro- and macromodels. The hysteresis graphs of the microscale model show that the modulus is the same in loading and unloading; similar to the metal plasticity models. The strength and failure strains in each anatomical direction are higher in compression than in tension. The microscale models exhibited an orthotropic behavior. Appropriate parameters of the cast iron plasticity model were chosen to generate macroscale models that are capable of replicating the observed microscale behavior of cancellous bone. Cancellous bone is an orthotropic material that can be simulated using a cast iron plasticity model. This model is capable of replicating the microscale behavior in finite element (FE) analysis simulations without the need for individual trabecula, leading to a reduction in computational resources without sacrificing model accuracy. Also, XFEM of cancellous bone compared to traditional finite element method proves to be a valuable tool to predict and model the fractures in the bone specimen.
    • Download: (2.828Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Equivalent Constitutive Model of Cancellous Bone With Fracture Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274940
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorSalem, Mohammad
    contributor authorWestover, Lindsey
    contributor authorAdeeb, Samer
    contributor authorDuke, Kajsa
    date accessioned2022-02-04T22:07:58Z
    date available2022-02-04T22:07:58Z
    date copyright9/8/2020 12:00:00 AM
    date issued2020
    identifier issn0148-0731
    identifier otherbio_142_12_121004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274940
    description abstractTo simulate the mechanical and fracture behaviors of cancellous bone in three anatomical directions and to develop an equivalent constitutive model. Microscale extended finite element method (XFEM) models of a cancellous specimen were developed with mechanical behaviors in three anatomical directions. An appropriate abaqus macroscale model replicated the behavior observed in the microscale models. The parameters were defined based on the intermediate bone material properties in the anatomical directions and assigned to an equivalent nonporous specimen of the same size. The equivalent model capability was analyzed by comparing the micro- and macromodels. The hysteresis graphs of the microscale model show that the modulus is the same in loading and unloading; similar to the metal plasticity models. The strength and failure strains in each anatomical direction are higher in compression than in tension. The microscale models exhibited an orthotropic behavior. Appropriate parameters of the cast iron plasticity model were chosen to generate macroscale models that are capable of replicating the observed microscale behavior of cancellous bone. Cancellous bone is an orthotropic material that can be simulated using a cast iron plasticity model. This model is capable of replicating the microscale behavior in finite element (FE) analysis simulations without the need for individual trabecula, leading to a reduction in computational resources without sacrificing model accuracy. Also, XFEM of cancellous bone compared to traditional finite element method proves to be a valuable tool to predict and model the fractures in the bone specimen.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Equivalent Constitutive Model of Cancellous Bone With Fracture Prediction
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4047080
    journal fristpage0121004-1
    journal lastpage0121004-10
    page10
    treeJournal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian