YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Computing and Information Science in Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Coarea Formulation for Grid-Based Evaluation of Volume Integrals

    Source: Journal of Computing and Information Science in Engineering:;2020:;volume( 020 ):;issue: 006::page 061012-1
    Author:
    Uchytil, Christopher
    ,
    Storti, Duane
    DOI: 10.1115/1.4047355
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We present a new method for computing volume integrals based on data sampled on a regular Cartesian grid. We treat the case where the domain is defined implicitly by an inequality, and the input data include sampled values of the defining function and the integrand. The method employs Federer’s coarea formula (Federer, 1969, Geometric Measure Theory, Grundlehren der mathematischen Wissenschaften, Springer) to convert the volume integral to a one-dimensional quadrature over level set values where the integrand is an integral over a level set surface. Application of any standard quadrature method produces an approximation of the integral over the continuous range as a weighted sum of integrals over level sets corresponding to a discrete set of values. The integral over each level set is evaluated using the grid-based approach presented by Yurtoglu et al. (2018, “Treat All Integrals as Volume Integrals: A Unified, Parallel, Grid-Based Method for Evaluation of Volume, Surface, and Path Integrals on Implicitly Defined Domains,” J. Comput. Inf. Sci. Eng., 18, p. 3). The new coarea method fills a need for computing volume integrals whose integrand cannot be written in terms of a vector potential. We present examples with known results, specifically integration of polynomials over the unit sphere. We also present Saye’s (2015, “High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles,” SIAM J. Sci. Comput., 37) example of integrating a logarithmic integrand over the intersection of a bounding box with an open domain implicitly defined by a trigonometric polynomial. For the final examples, the input data is a grid of mixture ratios from a direct numerical simulation of fluid mixing, and we demonstrate that the grid-based coarea method applies to computing volume integrals when no analytical form of the implicit defining function is given. The method is highly parallelizable, and the results presented are obtained using a parallel implementation capable of producing results at interactive rates.
    • Download: (408.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Coarea Formulation for Grid-Based Evaluation of Volume Integrals

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274921
    Collections
    • Journal of Computing and Information Science in Engineering

    Show full item record

    contributor authorUchytil, Christopher
    contributor authorStorti, Duane
    date accessioned2022-02-04T22:07:28Z
    date available2022-02-04T22:07:28Z
    date copyright6/16/2020 12:00:00 AM
    date issued2020
    identifier issn1530-9827
    identifier otherjcise_20_6_061012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274921
    description abstractWe present a new method for computing volume integrals based on data sampled on a regular Cartesian grid. We treat the case where the domain is defined implicitly by an inequality, and the input data include sampled values of the defining function and the integrand. The method employs Federer’s coarea formula (Federer, 1969, Geometric Measure Theory, Grundlehren der mathematischen Wissenschaften, Springer) to convert the volume integral to a one-dimensional quadrature over level set values where the integrand is an integral over a level set surface. Application of any standard quadrature method produces an approximation of the integral over the continuous range as a weighted sum of integrals over level sets corresponding to a discrete set of values. The integral over each level set is evaluated using the grid-based approach presented by Yurtoglu et al. (2018, “Treat All Integrals as Volume Integrals: A Unified, Parallel, Grid-Based Method for Evaluation of Volume, Surface, and Path Integrals on Implicitly Defined Domains,” J. Comput. Inf. Sci. Eng., 18, p. 3). The new coarea method fills a need for computing volume integrals whose integrand cannot be written in terms of a vector potential. We present examples with known results, specifically integration of polynomials over the unit sphere. We also present Saye’s (2015, “High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles,” SIAM J. Sci. Comput., 37) example of integrating a logarithmic integrand over the intersection of a bounding box with an open domain implicitly defined by a trigonometric polynomial. For the final examples, the input data is a grid of mixture ratios from a direct numerical simulation of fluid mixing, and we demonstrate that the grid-based coarea method applies to computing volume integrals when no analytical form of the implicit defining function is given. The method is highly parallelizable, and the results presented are obtained using a parallel implementation capable of producing results at interactive rates.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Coarea Formulation for Grid-Based Evaluation of Volume Integrals
    typeJournal Paper
    journal volume20
    journal issue6
    journal titleJournal of Computing and Information Science in Engineering
    identifier doi10.1115/1.4047355
    journal fristpage061012-1
    journal lastpage061012-6
    page6
    treeJournal of Computing and Information Science in Engineering:;2020:;volume( 020 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian