YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The UGKS Simulation of Microchannel Gas Flow and Heat Transfer Confined Between Isothermal and Nonisothermal Parallel Plates

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 012::page 0122501-1
    Author:
    Dai, Lianfu
    ,
    Wu, Huiying
    ,
    Tang, Jun
    DOI: 10.1115/1.4048255
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The unified gas kinetic scheme (UGKS) is introduced to simulate the near transition regime gas flow and heat transfer in microchannel confined between isothermal and nonisothermal parallel plates. The argon gas is used and its inlet Knudsen number (Knin) ranges from 0.0154 to 0.0715. It is found that: (1) both microchannel gas flows under isothermal and nonisothermal parallel plates display a trend of speed acceleration and temperature decrease along flow direction, for which the microscopic mechanism explanation is first proposed; (2) inlet gas streamlines under nonisothermal plates condition deviate from the parallel distributions under isothermal plates condition due to the dual driving effects of pressure drop along flow direction and temperature difference along cross section; (3) gas temperature, pressure, density and viscosity distributions along cross section under nonisothermal plates condition deviate from the parabolic distributions under isothermal plates condition, while the gas velocity keeps the parabolic distribution due to the effect of Knudsen layer; (4) as channel height increases or channel length and gas molecular mean free path decrease, the gas temperature distribution along cross section under nonisothermal plates condition tends to transition from linear to curve one due to the decreasing effect of heat transfer along cross section and increasing effect of gas acceleration along flow direction, this transition from linear to curve one becomes more obvious along flow direction. (5) the gas velocity under nonisothermal plates condition decreases with the increase of inlet gas temperature (Tin), lower plate temperature (Tl) and Knin, while the gas temperature increases with the increase of Tin, Tl and Knin.
    • Download: (4.201Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The UGKS Simulation of Microchannel Gas Flow and Heat Transfer Confined Between Isothermal and Nonisothermal Parallel Plates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274850
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorDai, Lianfu
    contributor authorWu, Huiying
    contributor authorTang, Jun
    date accessioned2022-02-04T22:05:24Z
    date available2022-02-04T22:05:24Z
    date copyright10/5/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_143_01_011801.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274850
    description abstractThe unified gas kinetic scheme (UGKS) is introduced to simulate the near transition regime gas flow and heat transfer in microchannel confined between isothermal and nonisothermal parallel plates. The argon gas is used and its inlet Knudsen number (Knin) ranges from 0.0154 to 0.0715. It is found that: (1) both microchannel gas flows under isothermal and nonisothermal parallel plates display a trend of speed acceleration and temperature decrease along flow direction, for which the microscopic mechanism explanation is first proposed; (2) inlet gas streamlines under nonisothermal plates condition deviate from the parallel distributions under isothermal plates condition due to the dual driving effects of pressure drop along flow direction and temperature difference along cross section; (3) gas temperature, pressure, density and viscosity distributions along cross section under nonisothermal plates condition deviate from the parabolic distributions under isothermal plates condition, while the gas velocity keeps the parabolic distribution due to the effect of Knudsen layer; (4) as channel height increases or channel length and gas molecular mean free path decrease, the gas temperature distribution along cross section under nonisothermal plates condition tends to transition from linear to curve one due to the decreasing effect of heat transfer along cross section and increasing effect of gas acceleration along flow direction, this transition from linear to curve one becomes more obvious along flow direction. (5) the gas velocity under nonisothermal plates condition decreases with the increase of inlet gas temperature (Tin), lower plate temperature (Tl) and Knin, while the gas temperature increases with the increase of Tin, Tl and Knin.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe UGKS Simulation of Microchannel Gas Flow and Heat Transfer Confined Between Isothermal and Nonisothermal Parallel Plates
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4048255
    journal fristpage0122501-1
    journal lastpage0122501-12
    page12
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian