YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Temperature-Rate-Dependent Thermoelasticity Theory With Memory-Dependent Derivative: Energy, Uniqueness Theorems, and Variational Principle

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 010::page 0102103-1
    Author:
    Singh, Biswajit
    ,
    Sarkar, Indranil
    ,
    Pal (Sarkar), Smita
    DOI: 10.1115/1.4047510
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This article is focused on developing a new mathematical model on the temperature-rate-dependent thermoelasticity theory (Green–Lindsay), using the methodology of memory-dependent derivative (MDD). First, the energy theorem of this model associated with two relaxation times in the context of MDD is derived for homogeneous, isotropic thermoelastic medium. Second, a uniqueness theorem for this model is proved using the Laplace transform technique. A variational principle for this model is also established. Finally, the results for Green–Lindsay model without MDD and coupled theory are obtained from the considered model.
    • Download: (1.482Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Temperature-Rate-Dependent Thermoelasticity Theory With Memory-Dependent Derivative: Energy, Uniqueness Theorems, and Variational Principle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274803
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorSingh, Biswajit
    contributor authorSarkar, Indranil
    contributor authorPal (Sarkar), Smita
    date accessioned2022-02-04T22:03:59Z
    date available2022-02-04T22:03:59Z
    date copyright7/16/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_10_101802.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274803
    description abstractThis article is focused on developing a new mathematical model on the temperature-rate-dependent thermoelasticity theory (Green–Lindsay), using the methodology of memory-dependent derivative (MDD). First, the energy theorem of this model associated with two relaxation times in the context of MDD is derived for homogeneous, isotropic thermoelastic medium. Second, a uniqueness theorem for this model is proved using the Laplace transform technique. A variational principle for this model is also established. Finally, the results for Green–Lindsay model without MDD and coupled theory are obtained from the considered model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTemperature-Rate-Dependent Thermoelasticity Theory With Memory-Dependent Derivative: Energy, Uniqueness Theorems, and Variational Principle
    typeJournal Paper
    journal volume142
    journal issue10
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4047510
    journal fristpage0102103-1
    journal lastpage0102103-10
    page10
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian