YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Grad's Second Problem and Its Solution Within the Framework of Burnett Hydrodynamics

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 010::page 0102105-1
    Author:
    Jadhav, Ravi Sudam
    ,
    Agrawal, Amit
    DOI: 10.1115/1.4047518
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In his seminal work, Grad not only derived 13 moment equations but also suggested two problems to check his derived equations. These problems are highly instructive as they bring out the character of the equations by examining their solutions to these problems. In this work, we propose Grad's second problem as the potential benchmark problem for checking the accuracy of different sets of higher-order transport equations. The problem definition can be stated as: examination of steady-state solution for a gas at rest in infinite domain upon application of a one-dimensional heat flux. With gas at rest (no bulk velocity), the interest lies in obtaining the solution for pressure and temperature. The problem is particularly interesting with respect to the solution for pressure when Maxwell and hard-sphere molecules are considered. For Maxwell molecules, it is well known that the exact normal solution of Boltzmann equation gives uniform pressure with no stresses in the flow domain. In the case of hard-sphere molecules, direct simulation Monte Carlo (DSMC) results predict nonuniform pressure field giving rise to stresses in the flow domain. The simplistic nature of the problem and interesting results for pressure for different interaction potentials makes it an ideal test problem for examining the accuracy of higher-order transport equations. The proposed problem is solved within the framework of Burnett hydrodynamics for hard-sphere and Maxwell molecules. For hard-sphere molecules, it is observed that the Burnett order stresses do not become zero; they rather give rise to a pressure gradient in a direction opposite to that of temperature gradient, consistent with the DSMC results. For Maxwell molecules, the numerical solution of Burnett equations predicts uniform pressure field and one-dimensional temperature field, consistent with the exact normal solution of the Boltzmann equation.
    • Download: (1.043Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Grad's Second Problem and Its Solution Within the Framework of Burnett Hydrodynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274795
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorJadhav, Ravi Sudam
    contributor authorAgrawal, Amit
    date accessioned2022-02-04T22:03:43Z
    date available2022-02-04T22:03:43Z
    date copyright7/16/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_09_094502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274795
    description abstractIn his seminal work, Grad not only derived 13 moment equations but also suggested two problems to check his derived equations. These problems are highly instructive as they bring out the character of the equations by examining their solutions to these problems. In this work, we propose Grad's second problem as the potential benchmark problem for checking the accuracy of different sets of higher-order transport equations. The problem definition can be stated as: examination of steady-state solution for a gas at rest in infinite domain upon application of a one-dimensional heat flux. With gas at rest (no bulk velocity), the interest lies in obtaining the solution for pressure and temperature. The problem is particularly interesting with respect to the solution for pressure when Maxwell and hard-sphere molecules are considered. For Maxwell molecules, it is well known that the exact normal solution of Boltzmann equation gives uniform pressure with no stresses in the flow domain. In the case of hard-sphere molecules, direct simulation Monte Carlo (DSMC) results predict nonuniform pressure field giving rise to stresses in the flow domain. The simplistic nature of the problem and interesting results for pressure for different interaction potentials makes it an ideal test problem for examining the accuracy of higher-order transport equations. The proposed problem is solved within the framework of Burnett hydrodynamics for hard-sphere and Maxwell molecules. For hard-sphere molecules, it is observed that the Burnett order stresses do not become zero; they rather give rise to a pressure gradient in a direction opposite to that of temperature gradient, consistent with the DSMC results. For Maxwell molecules, the numerical solution of Burnett equations predicts uniform pressure field and one-dimensional temperature field, consistent with the exact normal solution of the Boltzmann equation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleGrad's Second Problem and Its Solution Within the Framework of Burnett Hydrodynamics
    typeJournal Paper
    journal volume142
    journal issue10
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4047518
    journal fristpage0102105-1
    journal lastpage0102105-6
    page6
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian