YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer and Entropy Generation Analysis of Slit Pillar Array in Microchannels

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 009::page 092502-1
    Author:
    Cheng, Xiao
    ,
    Wu, Huiying
    DOI: 10.1115/1.4047267
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The slit pillar allows a small fraction of the mainstream flow through pillar to disturb the pillar wake zone fluid and eventually enhance the local and global heat transfer performances in microchannels. In this study, three-dimensional full-domain numerical simulations on the hydrodynamic and thermal characteristics of slit pillar array in microchannels are performed. Effects of slit angle and height over diameter (H/D) ratio on the fluid flow and heat transfer are studied. Comparisons with the nonslit pillar array are conducted on pressure drop, surface temperature, Nusselt number, and thermal performance index (TPI). Furthermore, the results are analyzed by using the entropy generation. As a result of secondary flows and enhanced convective heat transfer area, all cases at H/D ratio of 0.3 demonstrate enhanced heat transfer performance at an increase of 18.0–34.7% on Nusselt number, while a reduction of 3.4–12.9% on pressure drop in comparison to the criterion case at the same conditions. Among them, slit 15–15 deg shows the best comprehensive heat transfer performance. Due to the improved uniformities of velocity and temperature distributions, all slit pillar array microchannels show decreased entropy generation. The maximum entropy generation reduction can reach up to 15.8%, as compared with the criterion case at the same conditions. The above results fully demonstrate that the novel slit pillar array microchannel heat sink can be used as an effective approach for heat transfer enhancement.
    • Download: (5.681Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer and Entropy Generation Analysis of Slit Pillar Array in Microchannels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274786
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorCheng, Xiao
    contributor authorWu, Huiying
    date accessioned2022-02-04T22:03:26Z
    date available2022-02-04T22:03:26Z
    date copyright7/7/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_09_092502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274786
    description abstractThe slit pillar allows a small fraction of the mainstream flow through pillar to disturb the pillar wake zone fluid and eventually enhance the local and global heat transfer performances in microchannels. In this study, three-dimensional full-domain numerical simulations on the hydrodynamic and thermal characteristics of slit pillar array in microchannels are performed. Effects of slit angle and height over diameter (H/D) ratio on the fluid flow and heat transfer are studied. Comparisons with the nonslit pillar array are conducted on pressure drop, surface temperature, Nusselt number, and thermal performance index (TPI). Furthermore, the results are analyzed by using the entropy generation. As a result of secondary flows and enhanced convective heat transfer area, all cases at H/D ratio of 0.3 demonstrate enhanced heat transfer performance at an increase of 18.0–34.7% on Nusselt number, while a reduction of 3.4–12.9% on pressure drop in comparison to the criterion case at the same conditions. Among them, slit 15–15 deg shows the best comprehensive heat transfer performance. Due to the improved uniformities of velocity and temperature distributions, all slit pillar array microchannels show decreased entropy generation. The maximum entropy generation reduction can reach up to 15.8%, as compared with the criterion case at the same conditions. The above results fully demonstrate that the novel slit pillar array microchannel heat sink can be used as an effective approach for heat transfer enhancement.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer and Entropy Generation Analysis of Slit Pillar Array in Microchannels
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4047267
    journal fristpage092502-1
    journal lastpage092502-12
    page12
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian