YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 007::page 072501-1
    Author:
    Singh, Manpreet
    ,
    Gu, Qimei
    ,
    Ma, Ronghui
    ,
    Zhu, Liang
    DOI: 10.1115/1.4046967
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent micro-CT scans have demonstrated a much larger magnetic nanoparticle distribution volume in tumors after localized heating than those without heating, suggesting possible heating-induced nanoparticle migration. In this study, a theoretical simulation was performed on tumors injected with magnetic nanoparticles to evaluate the extent to which the nanoparticle redistribution affects the temperature elevation and thermal dosage required to cause permanent thermal damage to PC3 tumors. 0.1 cc of a commercially available ferrofluid containing magnetic nanoparticles was injected directly to the center of PC3 tumors. The control group consisted of four PC3 tumors resected after the intratumoral injection, while the experimental group consisted of another four PC3 tumors injected with ferrofluid and resected after 25 min of local heating. The micro-CT scan generated tumor model was attached to a mouse body model. The blood perfusion rates in the mouse body and PC3 tumor were first extracted based on the experimental data of average mouse surface temperatures using an infrared camera. A previously determined relationship between nanoparticle concentration and nanoparticle-induced volumetric heat generation rate was implemented into the theoretical simulation. Simulation results showed that the average steady-state temperature elevation in the tumors of the control group is higher than that in the experimental group where the nanoparticles are more spreading from the tumor center to the tumor periphery (control group: 70.6±4.7 °C versus experimental group: 69.2±2.6 °C). Further, we assessed heating time needed to cause permanent thermal damage to the entire tumor, based on the nanoparticle distribution in each tumor. The more spreading of nanoparticles to tumor periphery in the experimental group resulted in a much longer heating time than that in the control group. The modified thermal damage model by Dr. John Pearce led to almost the same temperature elevation distribution; however, the required heating time was at least 24% shorter than that using the traditional Arrhenius integral, despite the initial time delay. The results from this study suggest that in future simulation, the heating time needed when considering dynamic nanoparticle migration during heating is probably between 19 and 29 min based on the Pearce model. In conclusion, the study demonstrates the importance of including dynamic nanoparticle spreading during heating and accurate thermal damage model into theoretical simulation of temperature elevations in tumors to determine thermal dosage needed in magnetic nanoparticle hyperthermia design.
    • Download: (1.232Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274755
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorSingh, Manpreet
    contributor authorGu, Qimei
    contributor authorMa, Ronghui
    contributor authorZhu, Liang
    date accessioned2022-02-04T22:02:23Z
    date available2022-02-04T22:02:23Z
    date copyright5/29/2020 12:00:00 AM
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_07_072501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274755
    description abstractRecent micro-CT scans have demonstrated a much larger magnetic nanoparticle distribution volume in tumors after localized heating than those without heating, suggesting possible heating-induced nanoparticle migration. In this study, a theoretical simulation was performed on tumors injected with magnetic nanoparticles to evaluate the extent to which the nanoparticle redistribution affects the temperature elevation and thermal dosage required to cause permanent thermal damage to PC3 tumors. 0.1 cc of a commercially available ferrofluid containing magnetic nanoparticles was injected directly to the center of PC3 tumors. The control group consisted of four PC3 tumors resected after the intratumoral injection, while the experimental group consisted of another four PC3 tumors injected with ferrofluid and resected after 25 min of local heating. The micro-CT scan generated tumor model was attached to a mouse body model. The blood perfusion rates in the mouse body and PC3 tumor were first extracted based on the experimental data of average mouse surface temperatures using an infrared camera. A previously determined relationship between nanoparticle concentration and nanoparticle-induced volumetric heat generation rate was implemented into the theoretical simulation. Simulation results showed that the average steady-state temperature elevation in the tumors of the control group is higher than that in the experimental group where the nanoparticles are more spreading from the tumor center to the tumor periphery (control group: 70.6±4.7 °C versus experimental group: 69.2±2.6 °C). Further, we assessed heating time needed to cause permanent thermal damage to the entire tumor, based on the nanoparticle distribution in each tumor. The more spreading of nanoparticles to tumor periphery in the experimental group resulted in a much longer heating time than that in the control group. The modified thermal damage model by Dr. John Pearce led to almost the same temperature elevation distribution; however, the required heating time was at least 24% shorter than that using the traditional Arrhenius integral, despite the initial time delay. The results from this study suggest that in future simulation, the heating time needed when considering dynamic nanoparticle migration during heating is probably between 19 and 29 min based on the Pearce model. In conclusion, the study demonstrates the importance of including dynamic nanoparticle spreading during heating and accurate thermal damage model into theoretical simulation of temperature elevations in tumors to determine thermal dosage needed in magnetic nanoparticle hyperthermia design.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
    typeJournal Paper
    journal volume142
    journal issue7
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4046967
    journal fristpage072501-1
    journal lastpage072501-9
    page9
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian