YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Use of Thermal Energy Storage for Flexible Baseload Power Plants: Thermodynamic Analysis of Options for a Nuclear Rankine Cycle

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 005
    Author:
    Carlson, Fletcher
    ,
    Davidson, Jane H.
    DOI: 10.1115/1.4045230
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The intermittency of wind and solar energy can disrupt the dynamic balance utilities must maintain to meet fluctuating demand. This work examines the use of thermal energy storage (TES) to increase the operational flexibility of a baseload power plant and thus incentivize renewable energy and decarbonize the grid. A first and second law thermodynamic model of a nuclear power plant establishes the impacts of TES on the capacity factor and thermal efficiency of the plant. Four storage options, which are distinguished by the location within the cycle where steam is diverted for charging and whether discharge of the TES is via the primary or a secondary Rankine cycle, are considered. TES is compared to steam bypass, which is an alternative to provide baseload flexibility. TES is significantly better than steam bypass. The storage option with the greatest thermodynamic benefit is charged by diverting superheated steam at the outlet of the moisture separator/reheater (MSR) to the TES. The TES is discharged for peaking power through an optimized secondary cycle. TES increases the capacity factor as much as 15% compared to steam bypass at representative charging mass flowrates. The storage option that diverts steam from the steam generator to charge the TES and discharges the TES to the primary cycle extends the discharge power to a lower range and does not require a secondary cycle. In this case, the capacity factor and efficiency are as much as 8% greater than that of steam bypass.
    • Download: (1.541Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Use of Thermal Energy Storage for Flexible Baseload Power Plants: Thermodynamic Analysis of Options for a Nuclear Rankine Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274513
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorCarlson, Fletcher
    contributor authorDavidson, Jane H.
    date accessioned2022-02-04T14:51:06Z
    date available2022-02-04T14:51:06Z
    date copyright2020/03/17/
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_05_052904.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274513
    description abstractThe intermittency of wind and solar energy can disrupt the dynamic balance utilities must maintain to meet fluctuating demand. This work examines the use of thermal energy storage (TES) to increase the operational flexibility of a baseload power plant and thus incentivize renewable energy and decarbonize the grid. A first and second law thermodynamic model of a nuclear power plant establishes the impacts of TES on the capacity factor and thermal efficiency of the plant. Four storage options, which are distinguished by the location within the cycle where steam is diverted for charging and whether discharge of the TES is via the primary or a secondary Rankine cycle, are considered. TES is compared to steam bypass, which is an alternative to provide baseload flexibility. TES is significantly better than steam bypass. The storage option with the greatest thermodynamic benefit is charged by diverting superheated steam at the outlet of the moisture separator/reheater (MSR) to the TES. The TES is discharged for peaking power through an optimized secondary cycle. TES increases the capacity factor as much as 15% compared to steam bypass at representative charging mass flowrates. The storage option that diverts steam from the steam generator to charge the TES and discharges the TES to the primary cycle extends the discharge power to a lower range and does not require a secondary cycle. In this case, the capacity factor and efficiency are as much as 8% greater than that of steam bypass.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Use of Thermal Energy Storage for Flexible Baseload Power Plants: Thermodynamic Analysis of Options for a Nuclear Rankine Cycle
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4045230
    page52904
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian