YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Near Wake Development Behind Marine Propeller Model in Presence of Freestream Turbulence

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 005
    Author:
    Hermsen, Bennitt L.
    ,
    Bornemeier, Matthew
    ,
    Luznik, Luksa
    DOI: 10.1115/1.4045854
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Three-dimensional particle image velocimetry (PIV) experiments were conducted in the immediate near wake and up to seven diameters downstream of a three-bladed marine propeller model operating in two different inflow conditions: one with imposed freestream turbulence with intensity of 7% and streamwise integral length scale comparable to propeller geometry, and the second experiment with a quiescent inflow conditions as a reference. The resulting Reynolds number based on propeller chord and relative velocity is Re0.7R = 4.7 × 105. All components of radial transport of mean flow kinetic energy are analyzed and the largest contributor to the fluxes is found to be correlated to Reynolds shear stresses, resulting in radially outward flux in the wake. Two regions of the near wake are distinguishable with downstream extent dependent on the level of external turbulence. In the first region, immediately behind the propeller, shed tip vortices are very coherent and undergo grouping and roll-up around each other and the second region where the vortex merger process is complete and characterized by breakdown of vortices into small-scale turbulence. The latter region was found to occur earlier in the experiment with external turbulence. Conditional statistics of velocity fluctuations were employed and they show that outward interactions and sweep events contribute the most to the transfer of mean flow kinetic energy from the inner wake to the freestream.
    • Download: (3.757Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Near Wake Development Behind Marine Propeller Model in Presence of Freestream Turbulence

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274457
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorHermsen, Bennitt L.
    contributor authorBornemeier, Matthew
    contributor authorLuznik, Luksa
    date accessioned2022-02-04T14:49:31Z
    date available2022-02-04T14:49:31Z
    date copyright2020/02/04/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_05_051208.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274457
    description abstractThree-dimensional particle image velocimetry (PIV) experiments were conducted in the immediate near wake and up to seven diameters downstream of a three-bladed marine propeller model operating in two different inflow conditions: one with imposed freestream turbulence with intensity of 7% and streamwise integral length scale comparable to propeller geometry, and the second experiment with a quiescent inflow conditions as a reference. The resulting Reynolds number based on propeller chord and relative velocity is Re0.7R = 4.7 × 105. All components of radial transport of mean flow kinetic energy are analyzed and the largest contributor to the fluxes is found to be correlated to Reynolds shear stresses, resulting in radially outward flux in the wake. Two regions of the near wake are distinguishable with downstream extent dependent on the level of external turbulence. In the first region, immediately behind the propeller, shed tip vortices are very coherent and undergo grouping and roll-up around each other and the second region where the vortex merger process is complete and characterized by breakdown of vortices into small-scale turbulence. The latter region was found to occur earlier in the experiment with external turbulence. Conditional statistics of velocity fluctuations were employed and they show that outward interactions and sweep events contribute the most to the transfer of mean flow kinetic energy from the inner wake to the freestream.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNear Wake Development Behind Marine Propeller Model in Presence of Freestream Turbulence
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4045854
    page51208
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian