YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Inflation Response of Porcine Optic Nerve Head Using High-Frequency Ultrasound Elastography

    Source: Journal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 005
    Author:
    Ma, Yanhui
    ,
    Pavlatos, Elias
    ,
    Clayson, Keyton
    ,
    Kwok, Sunny
    ,
    Pan, Xueliang
    ,
    Liu, Jun
    DOI: 10.1115/1.4045503
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Characterization of the biomechanical behavior of the optic nerve head (ONH) in response to intraocular pressure (IOP) elevation is important for understanding glaucoma susceptibility. In this study, we aimed to develop and validate a three-dimensional (3D) ultrasound elastographic technique to obtain mapping and visualization of the 3D distributive displacements and strains of the ONH and surrounding peripapillary tissue (PPT) during whole globe inflation from 15 to 30 mmHg. 3D scans of the posterior eye around the ONH were acquired through full tissue thickness with a high-frequency ultrasound system (50 MHz). A 3D cross-correlation-based speckle-tracking algorithm was used to compute tissue displacements at ∼30,000 kernels distributed within the region of interest (ROI), and the components of the strain tensors were calculated at each kernel by using least square estimation of the displacement gradients. The accuracy of displacement calculation was evaluated using simulated rigid-body translation on ultrasound radiofrequency (RF) data obtained from a porcine posterior eye. The accuracy of strain calculation was evaluated using finite element (FE) models. Three porcine eyes were tested showing that ONH deformation was heterogeneous with localized high strains. Substantial radial (i.e., through-thickness) compression was observed in the anterior ONH and out-of-plane (i.e., perpendicular to the surface of the shell) shear was shown to concentrate in the vicinity of ONH/PPT border. These preliminary results demonstrated the feasibility of this technique to achieve comprehensive 3D evaluation of the mechanical responses of the posterior eye, which may provide mechanistic insights into the regional susceptibility in glaucoma.
    • Download: (4.168Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Inflation Response of Porcine Optic Nerve Head Using High-Frequency Ultrasound Elastography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274428
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorMa, Yanhui
    contributor authorPavlatos, Elias
    contributor authorClayson, Keyton
    contributor authorKwok, Sunny
    contributor authorPan, Xueliang
    contributor authorLiu, Jun
    date accessioned2022-02-04T14:48:47Z
    date available2022-02-04T14:48:47Z
    date copyright2020/01/20/
    date issued2020
    identifier issn0148-0731
    identifier otherbio_142_05_051013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274428
    description abstractCharacterization of the biomechanical behavior of the optic nerve head (ONH) in response to intraocular pressure (IOP) elevation is important for understanding glaucoma susceptibility. In this study, we aimed to develop and validate a three-dimensional (3D) ultrasound elastographic technique to obtain mapping and visualization of the 3D distributive displacements and strains of the ONH and surrounding peripapillary tissue (PPT) during whole globe inflation from 15 to 30 mmHg. 3D scans of the posterior eye around the ONH were acquired through full tissue thickness with a high-frequency ultrasound system (50 MHz). A 3D cross-correlation-based speckle-tracking algorithm was used to compute tissue displacements at ∼30,000 kernels distributed within the region of interest (ROI), and the components of the strain tensors were calculated at each kernel by using least square estimation of the displacement gradients. The accuracy of displacement calculation was evaluated using simulated rigid-body translation on ultrasound radiofrequency (RF) data obtained from a porcine posterior eye. The accuracy of strain calculation was evaluated using finite element (FE) models. Three porcine eyes were tested showing that ONH deformation was heterogeneous with localized high strains. Substantial radial (i.e., through-thickness) compression was observed in the anterior ONH and out-of-plane (i.e., perpendicular to the surface of the shell) shear was shown to concentrate in the vicinity of ONH/PPT border. These preliminary results demonstrated the feasibility of this technique to achieve comprehensive 3D evaluation of the mechanical responses of the posterior eye, which may provide mechanistic insights into the regional susceptibility in glaucoma.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThree-Dimensional Inflation Response of Porcine Optic Nerve Head Using High-Frequency Ultrasound Elastography
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4045503
    page51013
    treeJournal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian