YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dead Center Identification of Two-Degrees-of-Freedom Planar Parallel Manipulator Using Graph Theory and Transmission Angle

    Source: Journal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 005
    Author:
    Nie, Liangyi
    ,
    Ding, Huafeng
    DOI: 10.1115/1.4046913
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Parallel manipulators are widely applied for their advantages of high stiffness, load-bearing, operation speed, and precision positioning capabilities, which are required in many industrial applications. However, dead center identification is a challenging task and fundamental problem during design stage of parallel manipulators, and becomes more intractable for two-degrees-of-freedom (DOF) complex planar parallel manipulators (PPMs) design. This paper proposes a method to identify the dead center positions of two-DOF PPMs based on graph theory and transmission angle. First, these PPMs are denoted by a set of independent loops using a topological structural analysis of the kinematic chains and structural decomposition. Then, the relationship between the mobility factor and the loop factor in the same independent loop is utilized to obtain the folded or stretched operation to form the new PPMs containing the corresponding instantaneous virtual loop. Subsequently, the dead center positions can be located since the corresponding transmission angle of the new PPMs is equal to 0 deg or 180 deg. As a result, the solved dead center positions of the two-DOF three types seven-bar, nine-bar, and 11-bar PPMs will provide guidance for the proper design of these PPMs. Finally, the Jacobian method for identifying the dead center position is then used to verify the proposed method. The proposed method is systematic and programmable and can be applied to any two-DOF PPM regardless of the number of independent loops or types of joints.
    • Download: (1.088Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dead Center Identification of Two-Degrees-of-Freedom Planar Parallel Manipulator Using Graph Theory and Transmission Angle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274423
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorNie, Liangyi
    contributor authorDing, Huafeng
    date accessioned2022-02-04T14:48:41Z
    date available2022-02-04T14:48:41Z
    date copyright2020/05/11/
    date issued2020
    identifier issn1942-4302
    identifier otherjmr_12_5_051012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274423
    description abstractParallel manipulators are widely applied for their advantages of high stiffness, load-bearing, operation speed, and precision positioning capabilities, which are required in many industrial applications. However, dead center identification is a challenging task and fundamental problem during design stage of parallel manipulators, and becomes more intractable for two-degrees-of-freedom (DOF) complex planar parallel manipulators (PPMs) design. This paper proposes a method to identify the dead center positions of two-DOF PPMs based on graph theory and transmission angle. First, these PPMs are denoted by a set of independent loops using a topological structural analysis of the kinematic chains and structural decomposition. Then, the relationship between the mobility factor and the loop factor in the same independent loop is utilized to obtain the folded or stretched operation to form the new PPMs containing the corresponding instantaneous virtual loop. Subsequently, the dead center positions can be located since the corresponding transmission angle of the new PPMs is equal to 0 deg or 180 deg. As a result, the solved dead center positions of the two-DOF three types seven-bar, nine-bar, and 11-bar PPMs will provide guidance for the proper design of these PPMs. Finally, the Jacobian method for identifying the dead center position is then used to verify the proposed method. The proposed method is systematic and programmable and can be applied to any two-DOF PPM regardless of the number of independent loops or types of joints.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDead Center Identification of Two-Degrees-of-Freedom Planar Parallel Manipulator Using Graph Theory and Transmission Angle
    typeJournal Paper
    journal volume12
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4046913
    page51012
    treeJournal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian