YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Additive Manufacturing Process Parameters on Turbine Cooling

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 005
    Author:
    Snyder, Jacob C.
    ,
    Thole, Karen A.
    DOI: 10.1115/1.4046459
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Turbine cooling is a prime application for additive manufacturing because it enables quick development and implementation of innovative designs optimized for efficient heat removal, especially at the micro-scale. At the micro-scale, however, the surface finish plays a significant role in the heat transfer and pressure loss of any cooling design. Previous research on additively manufactured cooling channels has shown surface roughness increases both heat transfer and pressure loss to similar levels as highly engineered turbine cooling schemes. What has not been shown, however, is whether opportunities exist to tailor additively manufactured surfaces through control of the process parameters to further enhance the desired heat transfer and pressure loss characteristics. The results presented in this paper uniquely show the potential of manipulating the parameters within the additive manufacturing process to control the surface morphology, directly influencing turbine cooling. To determine the effect of parameters on cooling performance, coupons were additively manufactured for common internal and external cooling methods using different laser powers, scan speeds, and scanning strategies. Internal and external cooling tests were performed at engine relevant conditions to measure appropriate metrics of performance. Results showed the process parameters have a significant impact on the surface morphology leading to differences in cooling performance. Specifically, internal and external cooling geometries react differently to changes in parameters, highlighting the opportunity to consider process parameters when implementing additive manufacturing for turbine cooling applications.
    • Download: (1.283Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Additive Manufacturing Process Parameters on Turbine Cooling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274381
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSnyder, Jacob C.
    contributor authorThole, Karen A.
    date accessioned2022-02-04T14:47:39Z
    date available2022-02-04T14:47:39Z
    date copyright2020/04/30/
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_5_051007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274381
    description abstractTurbine cooling is a prime application for additive manufacturing because it enables quick development and implementation of innovative designs optimized for efficient heat removal, especially at the micro-scale. At the micro-scale, however, the surface finish plays a significant role in the heat transfer and pressure loss of any cooling design. Previous research on additively manufactured cooling channels has shown surface roughness increases both heat transfer and pressure loss to similar levels as highly engineered turbine cooling schemes. What has not been shown, however, is whether opportunities exist to tailor additively manufactured surfaces through control of the process parameters to further enhance the desired heat transfer and pressure loss characteristics. The results presented in this paper uniquely show the potential of manipulating the parameters within the additive manufacturing process to control the surface morphology, directly influencing turbine cooling. To determine the effect of parameters on cooling performance, coupons were additively manufactured for common internal and external cooling methods using different laser powers, scan speeds, and scanning strategies. Internal and external cooling tests were performed at engine relevant conditions to measure appropriate metrics of performance. Results showed the process parameters have a significant impact on the surface morphology leading to differences in cooling performance. Specifically, internal and external cooling geometries react differently to changes in parameters, highlighting the opportunity to consider process parameters when implementing additive manufacturing for turbine cooling applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Additive Manufacturing Process Parameters on Turbine Cooling
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4046459
    page51007
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian