YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Validation Studies of Linear Oscillating Compressor Cascade and Use of Influence Coefficient Method

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 005
    Author:
    Phan, H. M.
    ,
    He, L.
    DOI: 10.1115/1.4045657
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Advanced predictions of blade flutter have been continually pursued. It is noted however that validation cases of unsteady CFD methods against experimental cases with detailed 3D unsteady pressures are still rather lacking. The main objectives of the present work are two-folds. First, validate and understand the characteristics of blade tip clearance, as well as a bubble-type flow separation for an unsteady CFD solver against a 3D oscillating cascade experiment. And second, examine the applicability of the influence coefficient method (ICM) as widely used in an oscillating linear cascade setup. In the first part, the capability of a widely used commercial solver (CFX) for unsteady flows induced by a 3D oscillating compressor cascade is examined. The present computations have shown consistently a destabilizing effect of increasing blade tip clearance, in agreement with the experiment. More remarkably, the computational analyses reveal a distinctive interplay between the inlet endwall boundary layer and the tip clearance in relation to the aerodynamic damping. Different inlet endwall boundary layer thicknesses are shown to lead to qualitatively different aeroelastic stability characteristics in relation to tip clearance. The aero-damping variation with the tip clearance under the influence of the inlet endwall boundary layer seems to correlate closely to a balancing act between the passage vortex and the tip leakage vortex. The tip clearance aeroelastic behavior seems also in line with a simple quasi-steady analysis. On the other hand, the mid-chord laminar bubble separation on suction surface, though with a clear signature in the local aero-damping, has negligible effects on the overall stability. The second part aims to examine computationally the applicability of the influence coefficient method in a linear cascade setup. The comparison between the cascade-based ICM data and a baseline “tuned cascade” shows that the differences in the sensitivity to the far-field treatment can be significant, depending on inter-blade phase angles. On the other hand, non-linearity effects closely relevant to the basic linear assumption of the ICM are shown to only have a small influence. The present results suggest that extra caution should be exercised when comparing a CFD-based tuned cascade model with a finite cascade-based ICM model, at conditions close to acoustic resonance. The resultant discrepancies may well arise from the inherently different far-field sensitivities between the two models, rather than those typical numerical and physical modeling aspects of interest (e.g., meshing, spatial and temporal discretization errors as well as turbulence modeling).
    • Download: (1.605Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Validation Studies of Linear Oscillating Compressor Cascade and Use of Influence Coefficient Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274361
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorPhan, H. M.
    contributor authorHe, L.
    date accessioned2022-02-04T14:47:03Z
    date available2022-02-04T14:47:03Z
    date copyright2020/04/09/
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_5_051005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274361
    description abstractAdvanced predictions of blade flutter have been continually pursued. It is noted however that validation cases of unsteady CFD methods against experimental cases with detailed 3D unsteady pressures are still rather lacking. The main objectives of the present work are two-folds. First, validate and understand the characteristics of blade tip clearance, as well as a bubble-type flow separation for an unsteady CFD solver against a 3D oscillating cascade experiment. And second, examine the applicability of the influence coefficient method (ICM) as widely used in an oscillating linear cascade setup. In the first part, the capability of a widely used commercial solver (CFX) for unsteady flows induced by a 3D oscillating compressor cascade is examined. The present computations have shown consistently a destabilizing effect of increasing blade tip clearance, in agreement with the experiment. More remarkably, the computational analyses reveal a distinctive interplay between the inlet endwall boundary layer and the tip clearance in relation to the aerodynamic damping. Different inlet endwall boundary layer thicknesses are shown to lead to qualitatively different aeroelastic stability characteristics in relation to tip clearance. The aero-damping variation with the tip clearance under the influence of the inlet endwall boundary layer seems to correlate closely to a balancing act between the passage vortex and the tip leakage vortex. The tip clearance aeroelastic behavior seems also in line with a simple quasi-steady analysis. On the other hand, the mid-chord laminar bubble separation on suction surface, though with a clear signature in the local aero-damping, has negligible effects on the overall stability. The second part aims to examine computationally the applicability of the influence coefficient method in a linear cascade setup. The comparison between the cascade-based ICM data and a baseline “tuned cascade” shows that the differences in the sensitivity to the far-field treatment can be significant, depending on inter-blade phase angles. On the other hand, non-linearity effects closely relevant to the basic linear assumption of the ICM are shown to only have a small influence. The present results suggest that extra caution should be exercised when comparing a CFD-based tuned cascade model with a finite cascade-based ICM model, at conditions close to acoustic resonance. The resultant discrepancies may well arise from the inherently different far-field sensitivities between the two models, rather than those typical numerical and physical modeling aspects of interest (e.g., meshing, spatial and temporal discretization errors as well as turbulence modeling).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleValidation Studies of Linear Oscillating Compressor Cascade and Use of Influence Coefficient Method
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4045657
    page51005
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian