YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Post Heat Treatment on the Microstructure and Tensile Properties of Nano TiC Particulate Reinforced Inconel 718 by Selective Laser Melting

    Source: Journal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 005
    Author:
    Wang, Yachao
    ,
    Shi, Jing
    DOI: 10.1115/1.4046646
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To strengthen the metal components by selective laser melting (SLM), adding reinforcement particles and applying post treatments are generally regarded as the two effective means. However, how post heat treatment affects the properties of nano particulate reinforced metal composites obtained by laser additive manufacturing (AM) processes has rarely been studied. In this study, Inconel 718 matrix composite reinforced by 0.5 wt% nano TiC particles was prepared using SLM. To evaluate the effect of the heat treatment routines on the performance of the SLM-produced composite, two levels of solution temperature (980 and 1100 °C) were designed, and the solution treatment was followed by a standard two-step aging (720 °C for 8 h and 620 °C for 8 h). Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) observations were performed to examine the microstructure, and transmission electron microscopy (TEM) observation was conducted to characterize the morphologies of incorporated nano particles and precipitated phases. Tensile tests were conducted to evaluate the mechanical properties of the formed composites. It was found that nano particles can effectively strengthen the metal matrix under both as-built and heat-treated conditions, and the material undergoes static recrystallization during the post heat treatment. Also, it was discovered that nano TiC particles play an important role in refining the microstructure of Inconel 718 composite below 980 °C. The maximum tensile strength of 1370 MPa was observed under 980 °C + aging condition, representing a 16% increase as compared with the unreinforced Inconel 718.
    • Download: (1.864Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Post Heat Treatment on the Microstructure and Tensile Properties of Nano TiC Particulate Reinforced Inconel 718 by Selective Laser Melting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274354
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorWang, Yachao
    contributor authorShi, Jing
    date accessioned2022-02-04T14:46:49Z
    date available2022-02-04T14:46:49Z
    date copyright2020/03/26/
    date issued2020
    identifier issn1087-1357
    identifier othermanu_142_5_051004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274354
    description abstractTo strengthen the metal components by selective laser melting (SLM), adding reinforcement particles and applying post treatments are generally regarded as the two effective means. However, how post heat treatment affects the properties of nano particulate reinforced metal composites obtained by laser additive manufacturing (AM) processes has rarely been studied. In this study, Inconel 718 matrix composite reinforced by 0.5 wt% nano TiC particles was prepared using SLM. To evaluate the effect of the heat treatment routines on the performance of the SLM-produced composite, two levels of solution temperature (980 and 1100 °C) were designed, and the solution treatment was followed by a standard two-step aging (720 °C for 8 h and 620 °C for 8 h). Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) observations were performed to examine the microstructure, and transmission electron microscopy (TEM) observation was conducted to characterize the morphologies of incorporated nano particles and precipitated phases. Tensile tests were conducted to evaluate the mechanical properties of the formed composites. It was found that nano particles can effectively strengthen the metal matrix under both as-built and heat-treated conditions, and the material undergoes static recrystallization during the post heat treatment. Also, it was discovered that nano TiC particles play an important role in refining the microstructure of Inconel 718 composite below 980 °C. The maximum tensile strength of 1370 MPa was observed under 980 °C + aging condition, representing a 16% increase as compared with the unreinforced Inconel 718.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Post Heat Treatment on the Microstructure and Tensile Properties of Nano TiC Particulate Reinforced Inconel 718 by Selective Laser Melting
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4046646
    page51004
    treeJournal of Manufacturing Science and Engineering:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian