YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Excitation Frequency, Phase Shift, and Duty Cycle on Cooling Ratio in a Dynamically Forced Impingement Jet Array

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 005
    Author:
    Berthold, Arne
    ,
    Haucke, Frank
    DOI: 10.1115/1.4046616
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The cooling ratio on a dynamically forced 7 × 7 impingement jet array is studied experimentally. The current study is focused on determining the influence of a phase shift between every row of nozzles as well as the impact of a duty cycle variation on the cooling ratio. Both parameters are studied in dependency of the impingement distance (H/D = 2, 3, 5), the (nozzle-) Reynolds-number (ReD = 3200, 5200, 7200), and the excitation frequency (f = 0 Hz − 1000 Hz). For every set of parameters, the phase shift between every row of nozzles is varied between Φ=0% and 90%, while the variation of the duty cycle is performed between duty cycle (DC) = 35% and 65%. During all investigations, the dimensionless distance between adjacent nozzles is fixed at Sx/D = Sy/D = 5, and liquid crystal thermography is used to acquire the wall temperatures, which are further processed to calculate the local Nusselt numbers. Generally, the implementation of an excitation frequency allows a case-depending increase in the cooling ratio of up to 52%. Further implementation of a phase shift yields an additional frequency-depending improvement of the cooling ratio. In case of duty cycle variation, the best case revealed an additional 19% improvement in the cooling ratio.
    • Download: (909.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Excitation Frequency, Phase Shift, and Duty Cycle on Cooling Ratio in a Dynamically Forced Impingement Jet Array

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274315
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorBerthold, Arne
    contributor authorHaucke, Frank
    date accessioned2022-02-04T14:45:35Z
    date available2022-02-04T14:45:35Z
    date copyright2020/03/30/
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_5_051001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274315
    description abstractThe cooling ratio on a dynamically forced 7 × 7 impingement jet array is studied experimentally. The current study is focused on determining the influence of a phase shift between every row of nozzles as well as the impact of a duty cycle variation on the cooling ratio. Both parameters are studied in dependency of the impingement distance (H/D = 2, 3, 5), the (nozzle-) Reynolds-number (ReD = 3200, 5200, 7200), and the excitation frequency (f = 0 Hz − 1000 Hz). For every set of parameters, the phase shift between every row of nozzles is varied between Φ=0% and 90%, while the variation of the duty cycle is performed between duty cycle (DC) = 35% and 65%. During all investigations, the dimensionless distance between adjacent nozzles is fixed at Sx/D = Sy/D = 5, and liquid crystal thermography is used to acquire the wall temperatures, which are further processed to calculate the local Nusselt numbers. Generally, the implementation of an excitation frequency allows a case-depending increase in the cooling ratio of up to 52%. Further implementation of a phase shift yields an additional frequency-depending improvement of the cooling ratio. In case of duty cycle variation, the best case revealed an additional 19% improvement in the cooling ratio.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInfluence of Excitation Frequency, Phase Shift, and Duty Cycle on Cooling Ratio in a Dynamically Forced Impingement Jet Array
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4046616
    page51001
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian