YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Passive Hydraulic Training Simulator for Upper Arm Spasticity

    Source: Journal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 004
    Author:
    Liang, Jiahui
    ,
    Pei, Yinan
    ,
    Ewoldt, Randy H.
    ,
    Tippett, Steven R.
    ,
    Hsiao-Wecksler, Elizabeth T.
    DOI: 10.1115/1.4045845
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Spasticity is a hypertonic muscle behavior commonly observed in patients with multiple sclerosis, cerebral palsy, stroke, etc. Clinical assessment for spasticity is done through passive stretch evaluations of various joints using qualitative clinical scales, such as the Modified Ashworth Scale (MAS). Due to the subjective nature of this evaluation method, diagnostic results can have poor reliability and inconsistency. A few research groups have developed electromechanical training simulators of upper arm spasticity with the intent of providing healthcare students practical training opportunities. This paper presents a novel, purely mechanical (nonpowered) training simulator as an alternative design approach. This passive design utilizes a hydraulic damper with selectable viscous effect to simulate the speed-dependent spastic muscle tone and a Scotch-Yoke linkage system to create the “catch-release” behavior of spasticity. An analytical fluid model was developed to systematically design the hydraulic damper. The error residuals between model prediction and experimental damping force were found within ±2.0 N and percent errors within ±10% across various testing speeds (i.e., 250, 500, 750, and 1000 mm/min). The performance of the fully assembled simulator was tested under slow (ω ≤ 60 deg/s), medium (60 deg/s < ω < 150 deg/s), and fast (ω ≥ 150 deg/s) stretch speeds, where ω is the joint angular speed. Preliminary bench-top results suggested the feasibility of replicating five distinct levels of spasticity behaviors (MAS levels 0–4), where resistive torque increased with higher stretch speed and peak resistive torque ranged from 1.3 to 6.7 N · m under the fast stretch speed.
    • Download: (684.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Passive Hydraulic Training Simulator for Upper Arm Spasticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274297
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorLiang, Jiahui
    contributor authorPei, Yinan
    contributor authorEwoldt, Randy H.
    contributor authorTippett, Steven R.
    contributor authorHsiao-Wecksler, Elizabeth T.
    date accessioned2022-02-04T14:45:05Z
    date available2022-02-04T14:45:05Z
    date copyright2020/02/24/
    date issued2020
    identifier issn1942-4302
    identifier otherjmr_12_4_045001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274297
    description abstractSpasticity is a hypertonic muscle behavior commonly observed in patients with multiple sclerosis, cerebral palsy, stroke, etc. Clinical assessment for spasticity is done through passive stretch evaluations of various joints using qualitative clinical scales, such as the Modified Ashworth Scale (MAS). Due to the subjective nature of this evaluation method, diagnostic results can have poor reliability and inconsistency. A few research groups have developed electromechanical training simulators of upper arm spasticity with the intent of providing healthcare students practical training opportunities. This paper presents a novel, purely mechanical (nonpowered) training simulator as an alternative design approach. This passive design utilizes a hydraulic damper with selectable viscous effect to simulate the speed-dependent spastic muscle tone and a Scotch-Yoke linkage system to create the “catch-release” behavior of spasticity. An analytical fluid model was developed to systematically design the hydraulic damper. The error residuals between model prediction and experimental damping force were found within ±2.0 N and percent errors within ±10% across various testing speeds (i.e., 250, 500, 750, and 1000 mm/min). The performance of the fully assembled simulator was tested under slow (ω ≤ 60 deg/s), medium (60 deg/s < ω < 150 deg/s), and fast (ω ≥ 150 deg/s) stretch speeds, where ω is the joint angular speed. Preliminary bench-top results suggested the feasibility of replicating five distinct levels of spasticity behaviors (MAS levels 0–4), where resistive torque increased with higher stretch speed and peak resistive torque ranged from 1.3 to 6.7 N · m under the fast stretch speed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePassive Hydraulic Training Simulator for Upper Arm Spasticity
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4045845
    page45001
    treeJournal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian