YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strain-Based Failure Assessment Based on a Reference Strain Method for Welded Pipelines

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2020:;volume( 142 ):;issue: 004
    Author:
    Lee, Jae-Sung
    ,
    Kim, Myung-Hyun
    DOI: 10.1115/1.4045917
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Engineering critical assessment (ECA) is an evaluation procedure for structures with flaws and has been widely applied for assessing pipeline integrity. The standards for structural integrity assessment, including BS 7910, involve stress-based ECA, and they are known to produce overly conservative results. Therefore, strain-based ECA has been recently developed as an alternative approach. One of the effective methods for improving the accuracy of strain-based ECA is the reference strain method. However, only a limited number of studies have applied this method to welded pipelines. Therefore, a numerical analysis based on strain-based ECA was performed for girth-welded joints with a circumferentially oriented internal surface crack. Particular attention was given to the strength mismatch effects. The equivalent stress–strain curve in BS7910 was used to reflect the strength mismatch effects in the reference strain. The results of the proposed method were validated with the results of a finite element analysis (FEA) in terms of the J-integral. Previous methods and the proposed method exhibit a reasonable correlation of the J-integral in the case of over-matching (OM). In the under-matching (UM) cases, while the previous procedures tended to underestimate or excessively overestimate the elastic-plastic energy release rate in comparison with the FEA, the proposed method evaluated the J-integral of pipelines with sufficient accuracy.
    • Download: (799.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strain-Based Failure Assessment Based on a Reference Strain Method for Welded Pipelines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274248
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorLee, Jae-Sung
    contributor authorKim, Myung-Hyun
    date accessioned2022-02-04T14:43:38Z
    date available2022-02-04T14:43:38Z
    date copyright2020/02/24/
    date issued2020
    identifier issn0892-7219
    identifier otheromae_142_4_041701.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274248
    description abstractEngineering critical assessment (ECA) is an evaluation procedure for structures with flaws and has been widely applied for assessing pipeline integrity. The standards for structural integrity assessment, including BS 7910, involve stress-based ECA, and they are known to produce overly conservative results. Therefore, strain-based ECA has been recently developed as an alternative approach. One of the effective methods for improving the accuracy of strain-based ECA is the reference strain method. However, only a limited number of studies have applied this method to welded pipelines. Therefore, a numerical analysis based on strain-based ECA was performed for girth-welded joints with a circumferentially oriented internal surface crack. Particular attention was given to the strength mismatch effects. The equivalent stress–strain curve in BS7910 was used to reflect the strength mismatch effects in the reference strain. The results of the proposed method were validated with the results of a finite element analysis (FEA) in terms of the J-integral. Previous methods and the proposed method exhibit a reasonable correlation of the J-integral in the case of over-matching (OM). In the under-matching (UM) cases, while the previous procedures tended to underestimate or excessively overestimate the elastic-plastic energy release rate in comparison with the FEA, the proposed method evaluated the J-integral of pipelines with sufficient accuracy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStrain-Based Failure Assessment Based on a Reference Strain Method for Welded Pipelines
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4045917
    page41701
    treeJournal of Offshore Mechanics and Arctic Engineering:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian