contributor author | Budakli, Mete | |
contributor author | Salem, Thamer Khalif | |
contributor author | Arik, Mehmet | |
contributor author | Donmez, Barca | |
contributor author | Menceloglu, Yusuf | |
date accessioned | 2022-02-04T14:43:32Z | |
date available | 2022-02-04T14:43:32Z | |
date copyright | 2020/02/27/ | |
date issued | 2020 | |
identifier issn | 0022-1481 | |
identifier other | ht_142_04_041602.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4274245 | |
description abstract | Condensation heat transfer coefficients (HTCs) are rather low compared to thin film evaporation. Therefore, it can be a limiting factor for designing heat transfer equipment. In this work, heat transfer characteristics of water vapor condensation phenomena were experimentally studied on a vertically aligned smooth copper substrate for a range of pressures and temperatures for two different liquid wettability conditions. The heat transfer performance is dominated by the phase change process at the solid–vapor interface along with the liquid formation mechanism. Compared to heat transfer results measured at an untreated copper surface, heat transport is augmented with a thin layer of perfluoro-silane coating over the same substrate. In this work, the effect of saturation pressure on the condensation process at both surfaces has been investigated by analyzing heat transfer coefficients. The results obtained experimentally show an increase in contact angle (CA) with the surface coating. A heat transfer augmentation of about 26% over uncoated surfaces was obtained and surfaces did not show any degradation after 40 h of operation. Finally, current results are compared with heat transfer values reported in open literature. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effect of Polymer Coating on Vapor Condensation Heat Transfer | |
type | Journal Paper | |
journal volume | 142 | |
journal issue | 4 | |
journal title | Journal of Heat Transfer | |
identifier doi | 10.1115/1.4046300 | |
page | 41602 | |
tree | Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 004 | |
contenttype | Fulltext | |