YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Electrochemical Energy Conversion and Storage
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Controlling Porosity of Anode Support in Tubular Solid Oxide Fuel Cells by Freeze Casting

    Source: Journal of Electrochemical Energy Conversion and Storage:;2020:;volume( 017 ):;issue: 004
    Author:
    Emley, Benjamin
    ,
    Panthi, Dhruba
    ,
    Du, Yanhai
    ,
    Yao, Yan
    DOI: 10.1115/1.4046489
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Precise porosity control is highly desirable for improving the electrochemical performance of solid oxide fuel cells (SOFCs). Freeze casting is an established method for enabling high bulk porosity in structures and controlling pore orientation. In this study, freeze casting was used to fabricate tubular, anode-supported SOFCs with aligned and varying amounts of porosity by controlling the solids/water ratio in different casting slurries. SOFCs were prepared with a Ni/yttria and scandia stabilized zirconia (ScYSZ) anode support (AS), an anode functional layer (AFL), a ScYSZ electrolyte, a lanthanum strontium manganite (LSM)/ScYSZ cathode interlayer (CIL), and an LSM cathode. The permeability of the anode support was found to increase from 1.4 × 10−2 to 1.8 × 10−2 m2 as porosity was increased from 57 to 64 vol%, while the total cell resistance decreased by 35% from 0.93 to 0.60 Ohm cm2. When evaluated with 30 vol% H2 as the fuel at 800 °C, the decrease of concentration polarization enabled an increase in electrochemical performance by 42% from 0.35 to 0.50 W/cm2 as the porosity in the anode support was increased. Mechanical strength characterization using a three-point method showed there is a practical upper limit of the amount of porosity that can be designed into the anode support. This work paves a way for controlling porosity by freeze casting and understanding the correlation between porosity and concentration polarization losses in SOFCs.
    • Download: (957.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Controlling Porosity of Anode Support in Tubular Solid Oxide Fuel Cells by Freeze Casting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274197
    Collections
    • Journal of Electrochemical Energy Conversion and Storage

    Show full item record

    contributor authorEmley, Benjamin
    contributor authorPanthi, Dhruba
    contributor authorDu, Yanhai
    contributor authorYao, Yan
    date accessioned2022-02-04T14:42:12Z
    date available2022-02-04T14:42:12Z
    date copyright2020/04/03/
    date issued2020
    identifier issn2381-6872
    identifier otherjeecs_17_4_041106.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274197
    description abstractPrecise porosity control is highly desirable for improving the electrochemical performance of solid oxide fuel cells (SOFCs). Freeze casting is an established method for enabling high bulk porosity in structures and controlling pore orientation. In this study, freeze casting was used to fabricate tubular, anode-supported SOFCs with aligned and varying amounts of porosity by controlling the solids/water ratio in different casting slurries. SOFCs were prepared with a Ni/yttria and scandia stabilized zirconia (ScYSZ) anode support (AS), an anode functional layer (AFL), a ScYSZ electrolyte, a lanthanum strontium manganite (LSM)/ScYSZ cathode interlayer (CIL), and an LSM cathode. The permeability of the anode support was found to increase from 1.4 × 10−2 to 1.8 × 10−2 m2 as porosity was increased from 57 to 64 vol%, while the total cell resistance decreased by 35% from 0.93 to 0.60 Ohm cm2. When evaluated with 30 vol% H2 as the fuel at 800 °C, the decrease of concentration polarization enabled an increase in electrochemical performance by 42% from 0.35 to 0.50 W/cm2 as the porosity in the anode support was increased. Mechanical strength characterization using a three-point method showed there is a practical upper limit of the amount of porosity that can be designed into the anode support. This work paves a way for controlling porosity by freeze casting and understanding the correlation between porosity and concentration polarization losses in SOFCs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleControlling Porosity of Anode Support in Tubular Solid Oxide Fuel Cells by Freeze Casting
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Electrochemical Energy Conversion and Storage
    identifier doi10.1115/1.4046489
    page41106
    treeJournal of Electrochemical Energy Conversion and Storage:;2020:;volume( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian