Show simple item record

contributor authorCastorrini, Alessio
contributor authorVenturini, Paolo
contributor authorCorsini, Alessandro
contributor authorRispoli, Franco
date accessioned2022-02-04T14:40:12Z
date available2022-02-04T14:40:12Z
date copyright2020/01/29/
date issued2020
identifier issn0742-4795
identifier othergtp_142_04_041010.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274137
description abstractFans used in tunnel ventilation operate for decades in an atmosphere that carries dust, soot, and other solid particles. The formation of deposit on the rotor blades, considering a so long time of exposition to this particle-laden flow, is highly probable. A not negligible quantity of deposited material can produce damages on the performance of the fan, but also mass unbalancing, which is potentially dangerous for the structural integrity of the fan components. We applied our simulation tool to study a case of deposition on a large axial fan blade, used for tunnel ventilation. The outcome of the study is a parametric map of fouled blade geometries, obtained by simulating the deposition process over the increasing quantity of ingested particles mixture. The final map correlates the level and shape of deposit to the overall amount of particle ingested by the fan in its operating life. The same map can be easily used to predict the time needed in a specific application to reach any specific deposit thickness. The evolution algorithm and simulation tools developed in the past years by the authors were applied to predict the modified geometry of eroded rotor blades. Here, the same framework is updated to simulate the deposit problem. We use an integrated multiphase solver, coupled with a geometry update method. The solver can iteratively simulate the flow field, compute the particle tracking, dispersion, and deposit processes, and modify the geometry (and mesh) according to the predicted deposit shape and rate.
publisherThe American Society of Mechanical Engineers (ASME)
titleSimulation of the Deposit Evolution on a Fan Blade for Tunnel Ventilation
typeJournal Paper
journal volume142
journal issue4
journal titleJournal of Engineering for Gas Turbines and Power
identifier doi10.1115/1.4044930
page41010
treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record