YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 004
    Author:
    Hossain, Mohammad A.
    ,
    Asar, Munevver E.
    ,
    Gregory, James W.
    ,
    Bons, Jeffrey P.
    DOI: 10.1115/1.4046548
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The sweeping jet (SJ) film cooling hole has shown promising cooling performance compared to the standard shaped hole in low-speed conditions. The present work demonstrates the first attempt of SJ film cooling at an engine relevant Mach number. An experimental investigation was conducted to study the SJ film cooling on a nozzle guide vane suction surface. A well-established additive manufacturing technique commonly known as stereolithography (SLA) was utilized to design a transonic, engine representative vane geometry in which a row of SJ holes was used on the vane suction surface. Experiments were performed in a linear transonic cascade at an exit Mach number of 0.8 and blowing ratios of BR = 0.25–2.23. The measurement of heat transfer was conducted with the transient IR method, and the convective heat transfer coefficient (HTC) and adiabatic film cooling effectiveness were estimated using a dual linear regression technique (DLRT). Aerodynamic loss measurements were also performed with a total pressure Kiel probe at 0.25Cax downstream of the exit plane of the vane cascade. Experiments were also conducted for a baseline-shaped hole (777-hole) for a direct comparison. Results showed that the SJ hole has a wider coolant spreading in the lateral direction near the hole exit due to its sweeping motion that improves the overall cooling performance particularly at high blowing ratios (BR > 1). Aerodynamic loss measurement suggested that the SJ hole has a comparable total pressure loss to the 777-shaped hole.
    • Download: (1.868Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274130
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorHossain, Mohammad A.
    contributor authorAsar, Munevver E.
    contributor authorGregory, James W.
    contributor authorBons, Jeffrey P.
    date accessioned2022-02-04T14:40:01Z
    date available2022-02-04T14:40:01Z
    date copyright2020/03/17/
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_4_041009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274130
    description abstractThe sweeping jet (SJ) film cooling hole has shown promising cooling performance compared to the standard shaped hole in low-speed conditions. The present work demonstrates the first attempt of SJ film cooling at an engine relevant Mach number. An experimental investigation was conducted to study the SJ film cooling on a nozzle guide vane suction surface. A well-established additive manufacturing technique commonly known as stereolithography (SLA) was utilized to design a transonic, engine representative vane geometry in which a row of SJ holes was used on the vane suction surface. Experiments were performed in a linear transonic cascade at an exit Mach number of 0.8 and blowing ratios of BR = 0.25–2.23. The measurement of heat transfer was conducted with the transient IR method, and the convective heat transfer coefficient (HTC) and adiabatic film cooling effectiveness were estimated using a dual linear regression technique (DLRT). Aerodynamic loss measurements were also performed with a total pressure Kiel probe at 0.25Cax downstream of the exit plane of the vane cascade. Experiments were also conducted for a baseline-shaped hole (777-hole) for a direct comparison. Results showed that the SJ hole has a wider coolant spreading in the lateral direction near the hole exit due to its sweeping motion that improves the overall cooling performance particularly at high blowing ratios (BR > 1). Aerodynamic loss measurement suggested that the SJ hole has a comparable total pressure loss to the 777-shaped hole.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Sweeping Jet Film Cooling in a Transonic Turbine Cascade
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4046548
    page41009
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian