YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytic Solutions as a Tool for Verification and Validation of a Multiphysics Model

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2020:;volume( 004 ):;issue: 004
    Author:
    Tregillis, I. L.
    ,
    Koskelo, Aaron
    DOI: 10.1115/1.4045747
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Computational physicists are commonly faced with the task of resolving discrepancies between the predictions of a complex, integrated multiphysics numerical simulation, and corresponding experimental datasets. Such efforts commonly require a slow iterative procedure. However, a different approach is available in casesx where the multiphysics system of interest admits closed-form analytic solutions. In this situation, the ambiguity is conveniently broken into separate consideration of theory–simulation comparisons (issues of verification) and theory–data comparisons (issues of validation). We demonstrate this methodology via application to the specific example of a fluid-instability-based ejecta source model under development at Los Alamos National Laboratory and implemented in flag, a Los Alamos continuum mechanics code. The formalism is conducted in the forward sense (i.e., from source to measurement) and enables us to compute, purely analytically, time-dependent piezoelectric ejecta mass measurements for a specific class of explosively driven metal coupon experiments. We incorporate published measurement uncertainties on relevant experimental parameters to estimate a time-dependent uncertainty on these analytic predictions. This motivates the introduction of a “compatibility score” metric, our primary tool for quantitative analysis of the RMI + SSVD model. Finally, we derive a modification to the model, based on boundary condition considerations, that substantially improves its predictions.
    • Download: (2.566Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytic Solutions as a Tool for Verification and Validation of a Multiphysics Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274075
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorTregillis, I. L.
    contributor authorKoskelo, Aaron
    date accessioned2022-02-04T14:38:14Z
    date available2022-02-04T14:38:14Z
    date copyright2020/01/16/
    date issued2020
    identifier issn2377-2158
    identifier othervvuq_004_04_041004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274075
    description abstractComputational physicists are commonly faced with the task of resolving discrepancies between the predictions of a complex, integrated multiphysics numerical simulation, and corresponding experimental datasets. Such efforts commonly require a slow iterative procedure. However, a different approach is available in casesx where the multiphysics system of interest admits closed-form analytic solutions. In this situation, the ambiguity is conveniently broken into separate consideration of theory–simulation comparisons (issues of verification) and theory–data comparisons (issues of validation). We demonstrate this methodology via application to the specific example of a fluid-instability-based ejecta source model under development at Los Alamos National Laboratory and implemented in flag, a Los Alamos continuum mechanics code. The formalism is conducted in the forward sense (i.e., from source to measurement) and enables us to compute, purely analytically, time-dependent piezoelectric ejecta mass measurements for a specific class of explosively driven metal coupon experiments. We incorporate published measurement uncertainties on relevant experimental parameters to estimate a time-dependent uncertainty on these analytic predictions. This motivates the introduction of a “compatibility score” metric, our primary tool for quantitative analysis of the RMI + SSVD model. Finally, we derive a modification to the model, based on boundary condition considerations, that substantially improves its predictions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalytic Solutions as a Tool for Verification and Validation of a Multiphysics Model
    typeJournal Paper
    journal volume4
    journal issue4
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4045747
    page41004
    treeJournal of Verification, Validation and Uncertainty Quantification:;2020:;volume( 004 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian