YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Local Heat Transfer Distribution in Between Three-Dimensional Inclined Closed and Open Cavities

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 003
    Author:
    Saxena, Ashish
    ,
    Singh, Suneet
    ,
    Srivastava, Atul
    DOI: 10.1115/1.4045753
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The phenomenon of natural convection is investigated in three-dimensional (3D) cavities with four adiabatic walls and one hot wall. The surface opposite to the hot wall is either a wall (closed cavity) at a lower constant temperature or is open to ambient at a lower temperature (open cavity). It is pointed out here that not only overall heat transfer is important, the distribution of local heat transfer is also important. To quantify the uniformity of heat transfer distribution, the ratio of maximum to average heat transfer is calculated for various Rayleigh numbers as well as inclination angles for open and closed cavities. A significant difference in the local heat transfer profile along the hot surface of the closed cavity in comparison to that in open cavity for small inclination angle (especially at higher values of Rayleigh number) is noted. However, the profile is remarkably similar in the case of vertical cavities. For inclined closed cavities, there is a buoyancy component of the flow acceleration normal to the hot and cold wall, which is absent in the case of vertical cavities. For lower inclinations, this component brings the three-dimensionality in the flow field and leads to the differences in the flow patterns. The fluid striking the cold wall in the case of the closed cavity causes significantly different flow patterns that, in turn, lead to nonuniform local heat transfer. To explain the flow behavior, iso-surfaces, stream ribbons, and the Y-components of the flow velocity are plotted at different surfaces of the closed cavity.
    • Download: (3.006Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Local Heat Transfer Distribution in Between Three-Dimensional Inclined Closed and Open Cavities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273992
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorSaxena, Ashish
    contributor authorSingh, Suneet
    contributor authorSrivastava, Atul
    date accessioned2022-02-04T14:35:51Z
    date available2022-02-04T14:35:51Z
    date copyright2020/01/29/
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_03_032601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273992
    description abstractThe phenomenon of natural convection is investigated in three-dimensional (3D) cavities with four adiabatic walls and one hot wall. The surface opposite to the hot wall is either a wall (closed cavity) at a lower constant temperature or is open to ambient at a lower temperature (open cavity). It is pointed out here that not only overall heat transfer is important, the distribution of local heat transfer is also important. To quantify the uniformity of heat transfer distribution, the ratio of maximum to average heat transfer is calculated for various Rayleigh numbers as well as inclination angles for open and closed cavities. A significant difference in the local heat transfer profile along the hot surface of the closed cavity in comparison to that in open cavity for small inclination angle (especially at higher values of Rayleigh number) is noted. However, the profile is remarkably similar in the case of vertical cavities. For inclined closed cavities, there is a buoyancy component of the flow acceleration normal to the hot and cold wall, which is absent in the case of vertical cavities. For lower inclinations, this component brings the three-dimensionality in the flow field and leads to the differences in the flow patterns. The fluid striking the cold wall in the case of the closed cavity causes significantly different flow patterns that, in turn, lead to nonuniform local heat transfer. To explain the flow behavior, iso-surfaces, stream ribbons, and the Y-components of the flow velocity are plotted at different surfaces of the closed cavity.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComparison of Local Heat Transfer Distribution in Between Three-Dimensional Inclined Closed and Open Cavities
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4045753
    page32601
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian