YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Suction Vortices in a Pump Sump—Their Origin, Formation, and Dynamics

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 003
    Author:
    Yamade, Yoshinobu
    ,
    Kato, Chisachi
    ,
    Nagahara, Takahide
    ,
    Matsui, Jun
    DOI: 10.1115/1.4045953
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The origin, formation mechanism, and dynamics of suction vortices in a pump sump have been clarified by large eddy simulation (LES) applied to two different computational models. The first one is a pump-sump model with uniform flow entering a water channel of rectangular cross section and a vertical suction (outlet) pipe installed at its downstream end. LES with different wall boundary conditions have revealed that the origin of a submerged vortex is the mean shear of the approaching boundary layers that develop on the bottom and side walls of the sump. Detailed investigations have revealed that deviation of the mean flow triggers conversion of the vorticity axis to the vertical direction. The local acceleration of the vertical flow stretches the aforementioned vertical vortex, which results in the formation of a submerged vortex. The second one is a simplified computational model composed of a paraboloid of revolution and aims to accurately simulate the stretch of the viscous core of a submerged vortex that has appeared under the suction pipe of the pump-sump model. The differences between the models, especially predictions of the minimum pressure, imply that cavitation could have been initiated in the viscous core, if it had been taken into account, as is observed in the pump-sump experiment at the same condition. Parametric studies with different initial swirl numbers from 0.12 to 16.3 have clarified the behavior of the submerged vortex. It was found that a strong submerged vortex appears only at a relatively small range of the swirl numbers from 1.25 to 3.
    • Download: (11.96Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Suction Vortices in a Pump Sump—Their Origin, Formation, and Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273945
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorYamade, Yoshinobu
    contributor authorKato, Chisachi
    contributor authorNagahara, Takahide
    contributor authorMatsui, Jun
    date accessioned2022-02-04T14:34:37Z
    date available2022-02-04T14:34:37Z
    date copyright2020/02/03/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_03_031110.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273945
    description abstractThe origin, formation mechanism, and dynamics of suction vortices in a pump sump have been clarified by large eddy simulation (LES) applied to two different computational models. The first one is a pump-sump model with uniform flow entering a water channel of rectangular cross section and a vertical suction (outlet) pipe installed at its downstream end. LES with different wall boundary conditions have revealed that the origin of a submerged vortex is the mean shear of the approaching boundary layers that develop on the bottom and side walls of the sump. Detailed investigations have revealed that deviation of the mean flow triggers conversion of the vorticity axis to the vertical direction. The local acceleration of the vertical flow stretches the aforementioned vertical vortex, which results in the formation of a submerged vortex. The second one is a simplified computational model composed of a paraboloid of revolution and aims to accurately simulate the stretch of the viscous core of a submerged vortex that has appeared under the suction pipe of the pump-sump model. The differences between the models, especially predictions of the minimum pressure, imply that cavitation could have been initiated in the viscous core, if it had been taken into account, as is observed in the pump-sump experiment at the same condition. Parametric studies with different initial swirl numbers from 0.12 to 16.3 have clarified the behavior of the submerged vortex. It was found that a strong submerged vortex appears only at a relatively small range of the swirl numbers from 1.25 to 3.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSuction Vortices in a Pump Sump—Their Origin, Formation, and Dynamics
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4045953
    page31110
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian