YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Fluids Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulent Properties of Triple Elliptic Free Jets With Various Nozzle Orientation

    Source: Journal of Fluids Engineering:;2020:;volume( 142 ):;issue: 003
    Author:
    Morris, Ella Marie
    ,
    Aleyasin, Seyed Sobhan
    ,
    Biswas, Neelakash
    ,
    Tachie, Mark Francis
    DOI: 10.1115/1.4045619
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: An experimental investigation of nozzle orientation effects on turbulent characteristics of elliptic triple free jets was carried out for three nozzle configurations. The first configuration had each nozzle oriented along the minor plane (3_Minor), the next had two nozzles oriented along the minor plane and one along the major plane (Min_Maj_Min) and the last configuration had one nozzle oriented along the minor plane and two along the major plane (Maj_Min_Maj). The experiments were conducted using modified contoured nozzles with a sharp linear contraction for a nozzle spacing ratio of 4.1d, a nozzle equivalent diameter of 9 mm, and Reynolds number of 10,000. Nozzle orientation effects on the mean velocity, turbulent intensity, and Reynolds shear stress were discussed. The velocity decay, jet spread, merging point (MP), combined point (CP), and potential core length were used to characterize the effects of nozzle orientation on the mixing performance. The 3_Minor configuration had shorter potential core length and closer MP location which are indicative of a faster mixing in the converging region. The early merging of 3_Minor led to higher levels of streamwise turbulent intensity. One-dimensional plots revealed that jets approached self-similarity at a faster rate in the major axis. The orientation of the middle jet was found to be a key factor in determining transverse diffusion of the Reynolds shear stress in the plane of observation. Two-point correlations were used to provide insight into the effects of nozzle orientation on the spatial coherence of the large-scale turbulence structure and integral length scale.
    • Download: (6.838Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulent Properties of Triple Elliptic Free Jets With Various Nozzle Orientation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273931
    Collections
    • Journal of Fluids Engineering

    Show full item record

    contributor authorMorris, Ella Marie
    contributor authorAleyasin, Seyed Sobhan
    contributor authorBiswas, Neelakash
    contributor authorTachie, Mark Francis
    date accessioned2022-02-04T14:34:12Z
    date available2022-02-04T14:34:12Z
    date copyright2020/01/23/
    date issued2020
    identifier issn0098-2202
    identifier otherfe_142_03_031106.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273931
    description abstractAn experimental investigation of nozzle orientation effects on turbulent characteristics of elliptic triple free jets was carried out for three nozzle configurations. The first configuration had each nozzle oriented along the minor plane (3_Minor), the next had two nozzles oriented along the minor plane and one along the major plane (Min_Maj_Min) and the last configuration had one nozzle oriented along the minor plane and two along the major plane (Maj_Min_Maj). The experiments were conducted using modified contoured nozzles with a sharp linear contraction for a nozzle spacing ratio of 4.1d, a nozzle equivalent diameter of 9 mm, and Reynolds number of 10,000. Nozzle orientation effects on the mean velocity, turbulent intensity, and Reynolds shear stress were discussed. The velocity decay, jet spread, merging point (MP), combined point (CP), and potential core length were used to characterize the effects of nozzle orientation on the mixing performance. The 3_Minor configuration had shorter potential core length and closer MP location which are indicative of a faster mixing in the converging region. The early merging of 3_Minor led to higher levels of streamwise turbulent intensity. One-dimensional plots revealed that jets approached self-similarity at a faster rate in the major axis. The orientation of the middle jet was found to be a key factor in determining transverse diffusion of the Reynolds shear stress in the plane of observation. Two-point correlations were used to provide insight into the effects of nozzle orientation on the spatial coherence of the large-scale turbulence structure and integral length scale.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTurbulent Properties of Triple Elliptic Free Jets With Various Nozzle Orientation
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Fluids Engineering
    identifier doi10.1115/1.4045619
    page31106
    treeJournal of Fluids Engineering:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian