YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbine Vane Endwall Film Cooling Effectiveness of Different Purge Slot Configurations in a Linear Cascade

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 003
    Author:
    Müller, Gunther
    ,
    Landfester, Christian
    ,
    Böhle, Martin
    ,
    Krewinkel, Robert
    DOI: 10.1115/1.4045876
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This study is concerned with the film cooling effectiveness of the flow issuing from the gap between the nozzle guide vane (NGV) and the transition duct on the NGV endwall, i.e., the purge slot. Different slot widths, positions, and injection angles were examined in order to represent changes due to thermal expansion as well as design modifications. Apart from these geometric variations, different blowing ratios (BRs) and density ratios (DRs) were realized to investigate the effects of the interaction between secondary flow and film cooling effectiveness. The experimental tests were performed in a linear scale-1 cascade equipped with four highly loaded turbine vanes at the Institute of Fluid Mechanics and Fluid Machinery of the University of Kaiserslautern. The mainstream flow parameters were, with a Reynolds number of 300,000 and a Mach number (outlet) of 0.6, set to meet real engine conditions. By using various flow conditioners, periodic flow was obtained in the region of interest (ROI). The adiabatic film cooling effectiveness was determined using the pressure sensitive paint (PSP) technique. In this context, nitrogen and carbon dioxide were used as tracer gases realizing two different density ratios DR = 1.0 and 1.6. The investigation was conducted for a broad range of blowing ratios with 0.25 ≤ BR ≤ 1.50. In combination with 10 geometry variations and the aforementioned blowing and density ratio variations, 100 single operating points were investigated. For a better understanding of the coolant distribution, the secondary flows on the endwall were visualized by oil dye. The measurement results will be discussed based on the areal distribution of film cooling effectiveness, its lateral spanwise, as well as its area average. The results will provide a better insight into various parametric effects of gap variations on turbine vane endwall film cooling performance—notably under realistic engine conditions.
    • Download: (1.507Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbine Vane Endwall Film Cooling Effectiveness of Different Purge Slot Configurations in a Linear Cascade

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273848
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorMüller, Gunther
    contributor authorLandfester, Christian
    contributor authorBöhle, Martin
    contributor authorKrewinkel, Robert
    date accessioned2022-02-04T14:31:48Z
    date available2022-02-04T14:31:48Z
    date copyright2020/02/21/
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_3_031008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273848
    description abstractThis study is concerned with the film cooling effectiveness of the flow issuing from the gap between the nozzle guide vane (NGV) and the transition duct on the NGV endwall, i.e., the purge slot. Different slot widths, positions, and injection angles were examined in order to represent changes due to thermal expansion as well as design modifications. Apart from these geometric variations, different blowing ratios (BRs) and density ratios (DRs) were realized to investigate the effects of the interaction between secondary flow and film cooling effectiveness. The experimental tests were performed in a linear scale-1 cascade equipped with four highly loaded turbine vanes at the Institute of Fluid Mechanics and Fluid Machinery of the University of Kaiserslautern. The mainstream flow parameters were, with a Reynolds number of 300,000 and a Mach number (outlet) of 0.6, set to meet real engine conditions. By using various flow conditioners, periodic flow was obtained in the region of interest (ROI). The adiabatic film cooling effectiveness was determined using the pressure sensitive paint (PSP) technique. In this context, nitrogen and carbon dioxide were used as tracer gases realizing two different density ratios DR = 1.0 and 1.6. The investigation was conducted for a broad range of blowing ratios with 0.25 ≤ BR ≤ 1.50. In combination with 10 geometry variations and the aforementioned blowing and density ratio variations, 100 single operating points were investigated. For a better understanding of the coolant distribution, the secondary flows on the endwall were visualized by oil dye. The measurement results will be discussed based on the areal distribution of film cooling effectiveness, its lateral spanwise, as well as its area average. The results will provide a better insight into various parametric effects of gap variations on turbine vane endwall film cooling performance—notably under realistic engine conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTurbine Vane Endwall Film Cooling Effectiveness of Different Purge Slot Configurations in a Linear Cascade
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4045876
    page31008
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian