YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Experimental Validation of Two Cam-Based Force Regulation Mechanisms

    Source: Journal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 003
    Author:
    Li, Ming
    ,
    Cheng, Wei
    ,
    Xie, Ruili
    DOI: 10.1115/1.4045427
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents the design and experimental validation of two force regulation mechanisms (FRMs) containing a translational cam and a rotational cam, respectively. With the friction-considered profile identification method (FCPIM) to define the cam and through the squeezing between the cam and the spring-supported slider, the FRMs can passively output the desired force over the designed displacement. Under the premise of that the friction coefficient can be accurately obtained, the friction-considered design principle will be significant for the realization of FRMs in actual applications since it is no longer necessary to achieve high accuracy by pursuing the frictionless condition. Hence, the conventional materials and mechanical parts can be directly used to assemble the FRMs without sacrificing the force regulating accuracy. We are highly interested in the actual experimental behavior of the proposed FRMs under the friction-considered condition. Then, prototypes of the two FRMs capable of outputting multiple types of forces including in zero-stiffness, positive and negative stiffness are specially designed, fabricated, and tested quasi-statically. The experimental results verify the correctness of FCPIM since they agree with the design objective well. Meanwhile, the effectiveness of the FCPIM is proved as the errors of the experimental results considering friction is much lower than those ignoring friction. The experiments also show that the noise phenomenon in the testing curves that may affect the judgment of test accuracy can be highly degraded by using more stable and controllable loading tools, which is helpful for future research.
    • Download: (1.406Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Experimental Validation of Two Cam-Based Force Regulation Mechanisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273801
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorLi, Ming
    contributor authorCheng, Wei
    contributor authorXie, Ruili
    date accessioned2022-02-04T14:30:27Z
    date available2022-02-04T14:30:27Z
    date copyright2020/01/10/
    date issued2020
    identifier issn1942-4302
    identifier otherjmr_12_3_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273801
    description abstractThis paper presents the design and experimental validation of two force regulation mechanisms (FRMs) containing a translational cam and a rotational cam, respectively. With the friction-considered profile identification method (FCPIM) to define the cam and through the squeezing between the cam and the spring-supported slider, the FRMs can passively output the desired force over the designed displacement. Under the premise of that the friction coefficient can be accurately obtained, the friction-considered design principle will be significant for the realization of FRMs in actual applications since it is no longer necessary to achieve high accuracy by pursuing the frictionless condition. Hence, the conventional materials and mechanical parts can be directly used to assemble the FRMs without sacrificing the force regulating accuracy. We are highly interested in the actual experimental behavior of the proposed FRMs under the friction-considered condition. Then, prototypes of the two FRMs capable of outputting multiple types of forces including in zero-stiffness, positive and negative stiffness are specially designed, fabricated, and tested quasi-statically. The experimental results verify the correctness of FCPIM since they agree with the design objective well. Meanwhile, the effectiveness of the FCPIM is proved as the errors of the experimental results considering friction is much lower than those ignoring friction. The experiments also show that the noise phenomenon in the testing curves that may affect the judgment of test accuracy can be highly degraded by using more stable and controllable loading tools, which is helpful for future research.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Experimental Validation of Two Cam-Based Force Regulation Mechanisms
    typeJournal Paper
    journal volume12
    journal issue3
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4045427
    page31003
    treeJournal of Mechanisms and Robotics:;2020:;volume( 012 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian