YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stern Flap–Waterjet–Hull Interactions and Mechanism: A Case of Waterjet-Propelled Trimaran With Stern Flap

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2020:;volume( 142 ):;issue: 002
    Author:
    Zhang, Lei
    ,
    Zhang, Jianing
    ,
    Shang, Yuchen
    DOI: 10.1115/1.4045498
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To research the stern flap (SF) and waterjet–hull interaction, unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for a waterjet-propelled trimaran considering sinkage and trim are performed. Uncertainty analysis of the numerical results for the bare hull (BH) model is presented. At the design speed Froude number (Fr) of 0.6 and under displacement state, the model-scaled trimaran, installed with stern flaps of varied angle and length, tests the BH and self-propulsion (SP) performance based on URANS simulations. For the resistance, the global effects due to motions and the local effects of SF, waterjets (WJ), and the coupled term between SF and WJ on the hull are separately analyzed. Taking the waterjet propulsion system into account, an SP model with reasonable stern flap effectively reduces the trim, the resistance acting on the hull and the waterjet thrust deduction which contributes to energy-saving and high-efficiency propulsion. The mechanism of the improved performance of the waterjet-propelled trimaran with stern flaps is discussed. For the resistance increment, the global effects, the local effects of SF and WJ are the major reason for resistance increase, and the nonlinear coupled term of local effects contributes to the resistance reduction most. In addition, the different resistance components of frictional, hydrostatic, and hydrodynamic are separately researched, which shows that the pressure resistance components plays a leading role in the total resistance reduction in the SP model with the suitable SF.
    • Download: (1.548Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stern Flap–Waterjet–Hull Interactions and Mechanism: A Case of Waterjet-Propelled Trimaran With Stern Flap

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273698
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorZhang, Lei
    contributor authorZhang, Jianing
    contributor authorShang, Yuchen
    date accessioned2022-02-04T14:27:40Z
    date available2022-02-04T14:27:40Z
    date copyright2020/02/06/
    date issued2020
    identifier issn0892-7219
    identifier otheromae_142_2_021203.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273698
    description abstractTo research the stern flap (SF) and waterjet–hull interaction, unsteady Reynolds-averaged Navier–Stokes (URANS) simulations for a waterjet-propelled trimaran considering sinkage and trim are performed. Uncertainty analysis of the numerical results for the bare hull (BH) model is presented. At the design speed Froude number (Fr) of 0.6 and under displacement state, the model-scaled trimaran, installed with stern flaps of varied angle and length, tests the BH and self-propulsion (SP) performance based on URANS simulations. For the resistance, the global effects due to motions and the local effects of SF, waterjets (WJ), and the coupled term between SF and WJ on the hull are separately analyzed. Taking the waterjet propulsion system into account, an SP model with reasonable stern flap effectively reduces the trim, the resistance acting on the hull and the waterjet thrust deduction which contributes to energy-saving and high-efficiency propulsion. The mechanism of the improved performance of the waterjet-propelled trimaran with stern flaps is discussed. For the resistance increment, the global effects, the local effects of SF and WJ are the major reason for resistance increase, and the nonlinear coupled term of local effects contributes to the resistance reduction most. In addition, the different resistance components of frictional, hydrostatic, and hydrodynamic are separately researched, which shows that the pressure resistance components plays a leading role in the total resistance reduction in the SP model with the suitable SF.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStern Flap–Waterjet–Hull Interactions and Mechanism: A Case of Waterjet-Propelled Trimaran With Stern Flap
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4045498
    page21203
    treeJournal of Offshore Mechanics and Arctic Engineering:;2020:;volume( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian