YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Plasmon Resonance Imaging: A Technique to Reveal the Dropwise Condensation Mechanism

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 003::page 30903
    Author:
    Ahangar, Shahab Bayani
    ,
    Allen, Jeffrey S.
    ,
    Lee, Seong Hyuk
    ,
    Choi, Chang Kyoung
    DOI: 10.1115/1.4046136
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: To understand the physics behind dropwise condensation, a microscopy technique must be able to measure a sub-nanometer film at a high temporal resolution (>1,000 FPS). In this work, automated Surface Plasmon Resonance imaging (SPRi) is used as a tool to study the existence of a thin film between the dropwise condensate. SPRi is a label-free imaging technique that works based on the attenuated total internal reflection. SPRi can detect changes in the refractive index (RI) of the test medium in the thin region (<300 nm) above the sensing gold layer. The automated, angle-scanning SPRi instrument was developed by integrating linear and rotating motorized stages. This instrument improves conventional SPRi by enhancing the resolution of angle probing, increasing the speed of angle scanning, and minimizing the angle-dependent image artifacts. As a proof of concept, we visualized the three stages of coalescence at 10,000 FPS, including bridge formation, composite peanut-shape droplet formation, and the relaxation stage. Furthermore, we probed the solid-vapor interface during the dropwise condensation to evaluate the existence of a thin film on the substrate. The results of our visualization show that the area between droplets is covered by an adsorbed film with a thickness of a monolayer (0.275 nm) and a surface coverage of less than one (m2/m2). Moreover, the results reveal a dry region forms on the substrate when part of the substrate is exposed to ambient conditions due to the coalescence. The dry zone on the substrate has higher surface energy, as compared to the surrounding area. Therefore, the exposed area serves as a favorable site for vapor molecules to strike the surface and form new nuclei.
    • Download: (1.010Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Plasmon Resonance Imaging: A Technique to Reveal the Dropwise Condensation Mechanism

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273641
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorAhangar, Shahab Bayani
    contributor authorAllen, Jeffrey S.
    contributor authorLee, Seong Hyuk
    contributor authorChoi, Chang Kyoung
    date accessioned2022-02-04T14:25:53Z
    date available2022-02-04T14:25:53Z
    date copyright2020/02/05/
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_03_030903.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273641
    description abstractTo understand the physics behind dropwise condensation, a microscopy technique must be able to measure a sub-nanometer film at a high temporal resolution (>1,000 FPS). In this work, automated Surface Plasmon Resonance imaging (SPRi) is used as a tool to study the existence of a thin film between the dropwise condensate. SPRi is a label-free imaging technique that works based on the attenuated total internal reflection. SPRi can detect changes in the refractive index (RI) of the test medium in the thin region (<300 nm) above the sensing gold layer. The automated, angle-scanning SPRi instrument was developed by integrating linear and rotating motorized stages. This instrument improves conventional SPRi by enhancing the resolution of angle probing, increasing the speed of angle scanning, and minimizing the angle-dependent image artifacts. As a proof of concept, we visualized the three stages of coalescence at 10,000 FPS, including bridge formation, composite peanut-shape droplet formation, and the relaxation stage. Furthermore, we probed the solid-vapor interface during the dropwise condensation to evaluate the existence of a thin film on the substrate. The results of our visualization show that the area between droplets is covered by an adsorbed film with a thickness of a monolayer (0.275 nm) and a surface coverage of less than one (m2/m2). Moreover, the results reveal a dry region forms on the substrate when part of the substrate is exposed to ambient conditions due to the coalescence. The dry zone on the substrate has higher surface energy, as compared to the surrounding area. Therefore, the exposed area serves as a favorable site for vapor molecules to strike the surface and form new nuclei.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSurface Plasmon Resonance Imaging: A Technique to Reveal the Dropwise Condensation Mechanism
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4046136
    journal fristpage30903
    page30903
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian