YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Base Study to Investigate MASH Conservativeness of Occupant Risk Evaluation

    Source: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 002
    Author:
    Schulz, Nathan
    ,
    Dobrovolny, Chiara Silvestri
    ,
    Hurlebaus, Stefan
    ,
    Prodduturu, Harika Reddy
    ,
    Arrington, Dusty R.
    ,
    Rupp, Jonathan D.
    DOI: 10.1115/1.4045318
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The manual for assessing safety hardware (MASH) defines crash tests to assess the impact performance of highway safety features in frontal and oblique impact events. Within MASH, the risk of injury to the occupant is assessed based on a “flail-space” model that estimates the average deceleration that an unrestrained occupant would experience when contacting the vehicle interior in a MASH crash test and uses the parameter as a surrogate for injury risk. MASH occupant risk criteria, however, are considered conservative in their nature, due to the fact that they are based on unrestrained occupant accelerations. Therefore, there is potential for increasing the maximum limits dictated in MASH for occupant risk evaluation. A frontal full-scale vehicle impact was performed with inclusion of an instrumented anthropomorphic test device (ATD). The scope of this study was to investigate the performance of the flail space model (FSM) in a full-scale crash test compared to the instrumented ATD recorded forces which can more accurately predict the occupant response during a collision event. Additionally, a finite element (FE) model was developed and calibrated against the full-scale crash test. The calibrated model can be used to perform parametric simulations with different testing conditions. Results obtained through this research will be considered for better correlation between vehicle accelerations and occupant injury. This becomes extremely important for designing and evaluating barrier systems that must fit within geometrical site constraints, which do not provide adequate length to redirect test vehicles according to MASH conservative evaluation criteria.
    • Download: (5.319Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Base Study to Investigate MASH Conservativeness of Occupant Risk Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273605
    Collections
    • ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

    Show full item record

    contributor authorSchulz, Nathan
    contributor authorDobrovolny, Chiara Silvestri
    contributor authorHurlebaus, Stefan
    contributor authorProdduturu, Harika Reddy
    contributor authorArrington, Dusty R.
    contributor authorRupp, Jonathan D.
    date accessioned2022-02-04T14:24:39Z
    date available2022-02-04T14:24:39Z
    date copyright2020/03/30/
    date issued2020
    identifier issn2332-9017
    identifier otherrisk_006_02_021009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273605
    description abstractThe manual for assessing safety hardware (MASH) defines crash tests to assess the impact performance of highway safety features in frontal and oblique impact events. Within MASH, the risk of injury to the occupant is assessed based on a “flail-space” model that estimates the average deceleration that an unrestrained occupant would experience when contacting the vehicle interior in a MASH crash test and uses the parameter as a surrogate for injury risk. MASH occupant risk criteria, however, are considered conservative in their nature, due to the fact that they are based on unrestrained occupant accelerations. Therefore, there is potential for increasing the maximum limits dictated in MASH for occupant risk evaluation. A frontal full-scale vehicle impact was performed with inclusion of an instrumented anthropomorphic test device (ATD). The scope of this study was to investigate the performance of the flail space model (FSM) in a full-scale crash test compared to the instrumented ATD recorded forces which can more accurately predict the occupant response during a collision event. Additionally, a finite element (FE) model was developed and calibrated against the full-scale crash test. The calibrated model can be used to perform parametric simulations with different testing conditions. Results obtained through this research will be considered for better correlation between vehicle accelerations and occupant injury. This becomes extremely important for designing and evaluating barrier systems that must fit within geometrical site constraints, which do not provide adequate length to redirect test vehicles according to MASH conservative evaluation criteria.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Base Study to Investigate MASH Conservativeness of Occupant Risk Evaluation
    typeJournal Paper
    journal volume6
    journal issue2
    journal titleASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
    identifier doi10.1115/1.4045318
    page21009
    treeASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg:;2020:;volume( 006 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian